IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v7y2019i2p39-d221973.html
   My bibliography  Save this article

Imbalance Market Real Options and the Valuation of Storage in Future Energy Systems

Author

Listed:
  • John Moriarty

    (School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK)

  • Jan Palczewski

    (School of Mathematics, University of Leeds, Leeds LS2 9JT, UK)

Abstract

As decarbonisation progresses and conventional thermal generation gradually gives way to other technologies including intermittent renewables, there is an increasing requirement for system balancing from new and also fast-acting sources such as battery storage. In the deregulated context, this raises questions of market design and operational optimisation. In this paper, we assess the real option value of an arrangement under which an autonomous energy-limited storage unit sells incremental balancing reserve. The arrangement is akin to a perpetual American swing put option with random refraction times, where a single incremental balancing reserve action is sold at each exercise. The power used is bought in an energy imbalance market (EIM), whose price we take as a general regular one-dimensional diffusion. The storage operator’s strategy and its real option value are derived in this framework by solving the twin timing problems of when to buy power and when to sell reserve. Our results are illustrated with an operational and economic analysis using data from the German Amprion EIM.

Suggested Citation

  • John Moriarty & Jan Palczewski, 2019. "Imbalance Market Real Options and the Valuation of Storage in Future Energy Systems," Risks, MDPI, vol. 7(2), pages 1-30, April.
  • Handle: RePEc:gam:jrisks:v:7:y:2019:i:2:p:39-:d:221973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/7/2/39/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/7/2/39/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Adam Borison, 2005. "Real Options Analysis: Where Are the Emperor's Clothes?," Journal of Applied Corporate Finance, Morgan Stanley, vol. 17(2), pages 17-31, March.
    3. René Carmona & Savas Dayanik, 2008. "Optimal Multiple Stopping of Linear Diffusions," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 446-460, May.
    4. Rene Carmona & Michael Ludkovski, 2010. "Valuation of energy storage: an optimal switching approach," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 359-374.
    5. Just, Sebastian & Weber, Christoph, 2008. "Pricing of reserves: Valuing system reserve capacity against spot prices in electricity markets," Energy Economics, Elsevier, vol. 30(6), pages 3198-3221, November.
    6. Moriarty, John & Palczewski, Jan, 2017. "Real option valuation for reserve capacity," European Journal of Operational Research, Elsevier, vol. 257(1), pages 251-260.
    7. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    8. René Carmona & Nizar Touzi, 2008. "Optimal Multiple Stopping And Valuation Of Swing Options," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 239-268, April.
    9. Pflug, Georg C. & Broussev, Nikola, 2009. "Electricity swing options: Behavioral models and pricing," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1041-1050, September.
    10. Mastropietro, Paolo & Fontini, Fulvio & Rodilla, Pablo & Batlle, Carlos, 2018. "The Italian capacity remuneration mechanism: Critical review and open questions," Energy Policy, Elsevier, vol. 123(C), pages 659-669.
    11. Dayanik, Savas & Karatzas, Ioannis, 2003. "On the optimal stopping problem for one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 173-212, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Tarifa-Fernández & Ana María Sánchez-Pérez & Salvador Cruz-Rambaud, 2019. "Internet of Things and Their Coming Perspectives: A Real Options Approach," Sustainability, MDPI, vol. 11(11), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moriarty, John & Palczewski, Jan, 2017. "Real option valuation for reserve capacity," European Journal of Operational Research, Elsevier, vol. 257(1), pages 251-260.
    2. Manuel Guerra & Cláudia Nunes & Carlos Oliveira, 2021. "The optimal stopping problem revisited," Statistical Papers, Springer, vol. 62(1), pages 137-169, February.
    3. Li, Lingfei & Linetsky, Vadim, 2014. "Optimal stopping in infinite horizon: An eigenfunction expansion approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 122-128.
    4. Pavel V. Gapeev & Peter M. Kort & Maria N. Lavrutich & Jacco J. J. Thijssen, 2022. "Optimal Double Stopping Problems for Maxima and Minima of Geometric Brownian Motions," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 789-813, June.
    5. Pavel V. Gapeev, 2022. "Perpetual American Double Lookback Options on Drawdowns and Drawups with Floating Strikes," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 749-788, June.
    6. Christensen, Sören, 2014. "On the solution of general impulse control problems using superharmonic functions," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 709-729.
    7. S. C. P. Yam & W. Zhou, 2017. "Optimal Liquidation of Child Limit Orders," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 517-545, May.
    8. Nikolay Aleksandrov & Raphael Espinoza, 2011. "Optimal Oil Extraction as a Multiple Real Option," OxCarre Working Papers 064, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    9. Dahlgren, Eric & Leung, Tim, 2015. "An optimal multiple stopping approach to infrastructure investment decisions," Journal of Economic Dynamics and Control, Elsevier, vol. 53(C), pages 251-267.
    10. Tim Leung & Xin Li & Zheng Wang, 2014. "Optimal Starting-Stopping and Switching of a CIR Process with Fixed Costs," Papers 1411.6080, arXiv.org.
    11. Juri Hinz & Tanya Tarnopolskaya & Jeremy Yee, 2020. "Efficient algorithms of pathwise dynamic programming for decision optimization in mining operations," Annals of Operations Research, Springer, vol. 286(1), pages 583-615, March.
    12. Tim Leung & Kazutoshi Yamazaki & Hongzhong Zhang, 2015. "Optimal Multiple Stopping with Negative Discount Rate and Random Refraction Times under Levy Models," Papers 1505.07313, arXiv.org.
    13. Szabó, Dávid Zoltán & Duck, Peter & Johnson, Paul, 2020. "Optimal trading of imbalance options for power systems using an energy storage device," European Journal of Operational Research, Elsevier, vol. 285(1), pages 3-22.
    14. Tim Leung & Kazutoshi Yamazaki & Hongzhong Zhang, 2015. "An Analytic Recursive Method For Optimal Multiple Stopping: Canadization And Phase-Type Fitting," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-31.
    15. Guedes, José & Santos, Pedro, 2016. "Valuing an offshore oil exploration and production project through real options analysis," Energy Economics, Elsevier, vol. 60(C), pages 377-386.
    16. Liangchen Li & Michael Ludkovski, 2018. "Stochastic Switching Games," Papers 1807.03893, arXiv.org.
    17. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    18. Bolton, Patrick & Wang, Neng & Yang, Jinqiang, 2019. "Investment under uncertainty with financial constraints," Journal of Economic Theory, Elsevier, vol. 184(C).
    19. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    20. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2019:i:2:p:39-:d:221973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.