IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v13y2025i3p44-d1600021.html
   My bibliography  Save this article

Copula-Based Risk Aggregation and the Significance of Reinsurance

Author

Listed:
  • Alexandra Dias

    (School for Business and Society, University of York, York YO10 5ZF, UK)

  • Isaudin Ismail

    (Department of Mathematics and Statistics, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh 84600, Johor, Malaysia
    Department of Decision Sciences, HEC Montréal, Montréal, QC H3T 2A7, Canada)

  • Aihua Zhang

    (Department of Mathematical Sciences, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou 325060, China
    Department of Mathematical Sciences, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ 07083, USA)

Abstract

Insurance companies need to calculate solvency capital requirements in order to ensure that they can meet their future obligations to policyholders and beneficiaries. The solvency capital requirement is a risk management tool essential for addressing extreme catastrophic events that result in a high number of possibly interdependent claims. This paper studies the problem of aggregating the risks coming from several insurance business lines and analyses the effect of reinsurance on the level of risk. Our starting point is to use a hierarchical risk aggregation method which was initially based on two-dimensional elliptical copulas. We then propose the use of copulas from the Archimedean family and a mixture of different copulas. Our results show that a mixture of copulas can provide a better fit to the data than an individual copula and consequently avoid over- or underestimation of the capital requirement of an insurance company. We also investigate the significance of reinsurance in reducing the insurance company’s business risk and its effect on diversification. The results show that reinsurance does not always reduce the level of risk, but can also reduce the effect of diversification for insurance companies with multiple business lines.

Suggested Citation

  • Alexandra Dias & Isaudin Ismail & Aihua Zhang, 2025. "Copula-Based Risk Aggregation and the Significance of Reinsurance," Risks, MDPI, vol. 13(3), pages 1-23, February.
  • Handle: RePEc:gam:jrisks:v:13:y:2025:i:3:p:44-:d:1600021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/13/3/44/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/13/3/44/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    2. Mathieu Bargès & Hélène Cossette & Etienne Marceau, 2009. "TVaR-based capital allocation with copulas," Working Papers hal-00431265, HAL.
    3. Bargès, Mathieu & Cossette, Hélène & Marceau, Étienne, 2009. "TVaR-based capital allocation with copulas," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 348-361, December.
    4. Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo, 2010. "On the simplified pair-copula construction -- Simply useful or too simplistic?," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1296-1310, May.
    5. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    6. Bo Becker & Marcus M Opp & Farzad Saidi, 2022. "Regulatory Forbearance in the U.S. Insurance Industry: The Effects of Removing Capital Requirements for an Asset Class," The Review of Financial Studies, Society for Financial Studies, vol. 35(12), pages 5438-5482.
    7. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    8. Arbenz, Philipp & Hummel, Christoph & Mainik, Georg, 2012. "Copula based hierarchical risk aggregation through sample reordering," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 122-133.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillén, Montserrat & Sarabia, José María & Prieto, Faustino, 2013. "Simple risk measure calculations for sums of positive random variables," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 273-280.
    2. Elena Di Bernardino & Clémentine Prieur, 2014. "Estimation of multivariate conditional-tail-expectation using Kendall's process," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 241-267, June.
    3. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    4. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    5. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    6. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    7. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    8. Catalina Bolancé & Montserrat Guillén & Alemar Padilla, 2015. "Estimación del riesgo mediante el ajuste de cópulas," Working Papers 2015-01, Universitat de Barcelona, UB Riskcenter.
    9. Véronique Maume-Deschamps & Didier Rullière & Khalil Said, 2017. "Impact of Dependence on Some Multivariate Risk Indicators," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 395-427, June.
    10. Das Bikramjit & Fasen-Hartmann Vicky, 2019. "Conditional excess risk measures and multivariate regular variation," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 1-23, December.
    11. Ji, Liuyan & Tan, Ken Seng & Yang, Fan, 2021. "Tail dependence and heavy tailedness in extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 282-293.
    12. repec:hal:wpaper:hal-01171395 is not listed on IDEAS
    13. Cossette, Hélène & Landriault, David & Marceau, Etienne & Moutanabbir, Khouzeima, 2012. "Analysis of the discounted sum of ascending ladder heights," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 393-401.
    14. Kim, Daeyoung & Kim, Jong-Min & Liao, Shu-Min & Jung, Yoon-Sung, 2013. "Mixture of D-vine copulas for modeling dependence," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 1-19.
    15. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    16. Cossette, Hélène & Côté, Marie-Pier & Marceau, Etienne & Moutanabbir, Khouzeima, 2013. "Multivariate distribution defined with Farlie–Gumbel–Morgenstern copula and mixed Erlang marginals: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 560-572.
    17. Raluca Vernic, 2017. "Capital Allocation for Sarmanov’s Class of Distributions," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 311-330, March.
    18. Li, Jinzhu, 2022. "Asymptotic results on marginal expected shortfalls for dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 146-168.
    19. Hoebak Haff, Ingrid & Segers, Johan, 2012. "Nonparametric estimation of pair-copula constructions with the empirical pair-copula," LIDAM Discussion Papers ISBA 2012003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Kaveh Salehzadeh Nobari, 2021. "Pair copula constructions of point-optimal sign-based tests for predictive linear and nonlinear regressions," Papers 2111.04919, arXiv.org.
    21. Schepsmeier, Ulf, 2015. "Efficient information based goodness-of-fit tests for vine copula models with fixed margins: A comprehensive review," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 34-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:13:y:2025:i:3:p:44-:d:1600021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.