IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v11y2023i12p217-d1299138.html
   My bibliography  Save this article

Option Pricing and Portfolio Optimization under a Multi-Asset Jump-Diffusion Model with Systemic Risk

Author

Listed:
  • Roman N. Makarov

    (Department of Mathematics, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada)

Abstract

We explore a multi-asset jump-diffusion pricing model, combining a systemic risk asset with several conditionally independent ordinary assets. Our approach allows for analyzing and modeling a portfolio that integrates high-activity security, such as an exchange trading fund (ETF) tracking a major market index (e.g., S&P500), along with several low-activity securities infrequently traded on financial markets. The model retains tractability even as the number of securities increases. The proposed framework allows for constructing models with common and asset-specific jumps with normally or exponentially distributed sizes. One of the main features of the model is the possibility of estimating parameters for each asset price process individually. We present the conditional maximum likelihood estimation (MLE) method for fitting asset price processes to empirical data. For the case with common jumps only, we derive a closed-form solution to the conditional MLE method for ordinary assets that works even if the data are incomplete and asynchronous. Alternatively, to find risk-neutral parameters, the least-square method calibrates the model to option values. The number of parameters grows linearly in the number of assets compared to the quadratic growth through the correlation matrix, which is typical for many other multi-asset models. We delve into the properties of the proposed model, its parameter estimation using the MLE method and least-squares technique, the evaluation of VaR and CVaR metrics, the identification of optimal portfolios, and the pricing of European-style basket options. We propose a Laplace-transform-based approach to computing Value at Risk (VaR) and conditional VaR (also known as the expected shortfall) of portfolio returns. Additionally, European-style basket options written on the extreme and average stock prices or returns can be evaluated semi-analytically. For numerical demonstration, we examine a combination of the SPDR S&P 500 ETF (as a systemic risk asset) with eight ordinary assets representing diverse industries. Using historical assets and options prices, we estimate the real-world and risk-neutral parameters of the model with common jumps, construct several optimal portfolios, and evaluate various basket options with the eight assets. The results affirm the robustness and efficiency of the estimation and evaluation methodologies. Computational results are compared with Monte Carlo estimates.

Suggested Citation

  • Roman N. Makarov, 2023. "Option Pricing and Portfolio Optimization under a Multi-Asset Jump-Diffusion Model with Systemic Risk," Risks, MDPI, vol. 11(12), pages 1-24, December.
  • Handle: RePEc:gam:jrisks:v:11:y:2023:i:12:p:217-:d:1299138
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/11/12/217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/11/12/217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michele Leonardo Bianchi & Gian Luca Tassinari, 2020. "Forward-looking portfolio selection with multivariate non-Gaussian models," Quantitative Finance, Taylor & Francis Journals, vol. 20(10), pages 1645-1661, October.
    2. Laura Ballotta & Efrem Bonfiglioli, 2016. "Multivariate asset models using Lévy processes and applications," The European Journal of Finance, Taylor & Francis Journals, vol. 22(13), pages 1320-1350, October.
    3. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    2. M. Gardini & P. Sabino & E. Sasso, 2021. "The Variance Gamma++ Process and Applications to Energy Markets," Papers 2106.15452, arXiv.org.
    3. Michele Leonardo Bianchi & Asmerilda Hitaj & Gian Luca Tassinari, 2020. "Multivariate non-Gaussian models for financial applications," Papers 2005.06390, arXiv.org.
    4. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    5. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    6. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    7. Marcelo G. Figueroa, 2006. "Pricing Multiple Interruptible-Swing Contracts," Birkbeck Working Papers in Economics and Finance 0606, Birkbeck, Department of Economics, Mathematics & Statistics.
    8. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    9. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    10. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
    11. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    12. Louis Paulot & Xavier Lacroze, 2009. "One-Dimensional Pricing of CPPI," Papers 0905.2926, arXiv.org, revised Feb 2010.
    13. Yang, Zhaoqiang, 2020. "Default probability of American lookback option in a mixed jump-diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    14. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    15. Gapeev, Pavel V., 2006. "On maximal inequalities for some jump processes," SFB 649 Discussion Papers 2006-060, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    17. Maekawa, Koichi & Lee, Sangyeol & Morimoto, Takayuki & Kawai, Ken-ichi, 2008. "Jump diffusion model with application to the Japanese stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 223-236.
    18. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    19. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    20. Chang-Yi Li & Son-Nan Chen & Shih-Kuei Lin, 2016. "Pricing derivatives with modeling CO emission allowance using a regime-switching jump diffusion model: with regime-switching risk premium," The European Journal of Finance, Taylor & Francis Journals, vol. 22(10), pages 887-908, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:11:y:2023:i:12:p:217-:d:1299138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.