IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v10y2022i6p121-d836446.html
   My bibliography  Save this article

A Managed Volatility Investment Strategy for Pooled Annuity Products

Author

Listed:
  • Shuanglan Li

    (School of Risk and Actuarial Studies, Australian Research Council Centre of Excellence in Population Ageing Research (CEPAR), UNSW Sydney, Sydney, NSW 2052, Australia)

  • Héloïse Labit Hardy

    (School of Risk and Actuarial Studies, Australian Research Council Centre of Excellence in Population Ageing Research (CEPAR), UNSW Sydney, Sydney, NSW 2052, Australia)

  • Michael Sherris

    (School of Risk and Actuarial Studies, Australian Research Council Centre of Excellence in Population Ageing Research (CEPAR), UNSW Sydney, Sydney, NSW 2052, Australia)

  • Andrés M. Villegas

    (School of Risk and Actuarial Studies, Australian Research Council Centre of Excellence in Population Ageing Research (CEPAR), UNSW Sydney, Sydney, NSW 2052, Australia)

Abstract

Pooled annuity products, where the participants share systematic and idiosyncratic mortality risks as well as investment returns and risk, provide an attractive and effective alternative to traditional guaranteed life annuity products. While longevity risk sharing in pooled annuities has received recent attention, incorporating investment risk beyond fixed interest returns is relatively unexplored. Incorporating equity investments has the potential to increase expected annuity payments at the expense of higher variability. We propose and assess a strategy for incorporating equity investments along with managed-volatility for pooled annuity funds. We show how the managed volatility strategy improves investment performance, while reducing pooled annuity income volatility and downside risk, as well as an investment strategy that reduces exposure to investment risk over time. We quantify the impact of pool size when equity investments are included, showing how these products are viable with relatively small pool sizes.

Suggested Citation

  • Shuanglan Li & Héloïse Labit Hardy & Michael Sherris & Andrés M. Villegas, 2022. "A Managed Volatility Investment Strategy for Pooled Annuity Products," Risks, MDPI, vol. 10(6), pages 1-30, June.
  • Handle: RePEc:gam:jrisks:v:10:y:2022:i:6:p:121-:d:836446
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/10/6/121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/10/6/121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Piggott & Emiliano A. Valdez & Bettina Detzel, 2005. "The Simple Analytics of a Pooled Annuity Fund," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(3), pages 497-520, September.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Valdez, Emiliano A. & Piggott, John & Wang, Liang, 2006. "Demand and adverse selection in a pooled annuity fund," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 251-266, October.
    4. Peijnenburg, Kim & Nijman, Theo & Werker, Bas J.M., 2016. "The annuity puzzle remains a puzzle," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 18-35.
    5. Milevsky, Moshe A. & Salisbury, Thomas S., 2016. "Equitable Retirement Income Tontines: Mixing Cohorts Without Discriminating," ASTIN Bulletin, Cambridge University Press, vol. 46(3), pages 571-604, September.
    6. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    7. Milevsky, Moshe A. & Salisbury, Thomas S., 2015. "Optimal retirement income tontines," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 91-105.
    8. Catherine Donnelly, 2013. "Actuarial fairness and solidarity in pooled annuity funds," Papers 1311.5120, arXiv.org, revised Jul 2014.
    9. Donnelly, Catherine & Guillén, Montserrat & Nielsen, Jens Perch, 2014. "Bringing cost transparency to the life annuity market," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 14-27.
    10. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Estelle James & Xue Song, 2001. "Annuities Markets Around the World: Money’s Worth and Risk Intermediation," CeRP Working Papers 16, Center for Research on Pensions and Welfare Policies, Turin (Italy).
    13. Blackburn, Craig & Sherris, Michael, 2013. "Consistent dynamic affine mortality models for longevity risk applications," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 64-73.
    14. Donnelly, Catherine & Guillén, Montserrat & Nielsen, Jens Perch, 2013. "Exchanging uncertain mortality for a cost," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 65-76.
    15. Stamos, Michael Z., 2008. "Optimal consumption and portfolio choice for pooled annuity funds," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 56-68, August.
    16. Chen, An & Rach, Manuel & Sehner, Thorsten, 2020. "On The Optimal Combination Of Annuities And Tontines," ASTIN Bulletin, Cambridge University Press, vol. 50(1), pages 95-129, January.
    17. Donnelly, Catherine, 2015. "Actuarial Fairness And Solidarity In Pooled Annuity Funds," ASTIN Bulletin, Cambridge University Press, vol. 45(1), pages 49-74, January.
    18. Harris, Glen R., 1999. "Markov Chain Monte Carlo Estimation of Regime Switching Vector Autoregressions," ASTIN Bulletin, Cambridge University Press, vol. 29(1), pages 47-79, May.
    19. Hainaut, Donatien & Devolder, Pierre, 2006. "Life Annuitization: Why and how Much?," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 629-654, November.
    20. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bégin, Jean-François & Sanders, Barbara, 2024. "Benefit volatility-targeting strategies in lifetime pension pools," Insurance: Mathematics and Economics, Elsevier, vol. 118(C), pages 72-94.
    2. Kabuche, Doreen & Sherris, Michael & Villegas, Andrés M. & Ziveyi, Jonathan, 2024. "Pooling functional disability and mortality in long-term care insurance and care annuities: A matrix approach for multi-state pools," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 165-188.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, An & Hieber, Peter & Rach, Manuel, 2021. "Optimal retirement products under subjective mortality beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 55-69.
    2. Bégin, Jean-François & Sanders, Barbara, 2024. "Benefit volatility-targeting strategies in lifetime pension pools," Insurance: Mathematics and Economics, Elsevier, vol. 118(C), pages 72-94.
    3. Thomas Bernhardt & Catherine Donnelly, 2019. "Modern tontine with bequest: innovation in pooled annuity products," Papers 1903.05990, arXiv.org.
    4. Bernhardt, Thomas & Donnelly, Catherine, 2019. "Modern tontine with bequest: Innovation in pooled annuity products," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 168-188.
    5. Chen, An & Guillen, Montserrat & Rach, Manuel, 2021. "Fees in tontines," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 89-106.
    6. Chen, An & Rach, Manuel, 2019. "Options on tontines: An innovative way of combining tontines and annuities," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 182-192.
    7. Marcel Bräutigam & Montserrat Guillén & Jens P. Nielsen, 2017. "Facing Up to Longevity with Old Actuarial Methods: A Comparison of Pooled Funds and Income Tontines," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 42(3), pages 406-422, July.
    8. Dagpunar, John, 2021. "Closed-form solutions for an explicit modern ideal tontine with bequest motive," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 261-273.
    9. Thomas Bernhardt & Catherine Donnelly, 2020. "Quantifying the trade-off between income stability and the number of members in a pooled annuity fund," Papers 2010.16009, arXiv.org.
    10. Xie, Lin & Chen, Lv & Qian, Linyi & Li, Danping & Yang, Zhixin, 2023. "Optimal investment and consumption strategies for pooled annuity with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 129-155.
    11. Chen, An & Rach, Manuel, 2023. "Actuarial fairness and social welfare in mixed-cohort tontines," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 214-229.
    12. Hieber, Peter & Lucas, Nathalie, 2020. "Life-Care Tontines," LIDAM Discussion Papers ISBA 2020026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Milevsky, Moshe A. & Salisbury, Thomas S., 2015. "Optimal retirement income tontines," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 91-105.
    14. Annamaria Olivieri, 2021. "Designing Annuities with Flexibility Opportunities in an Uncertain Mortality Scenario," Risks, MDPI, vol. 9(11), pages 1-18, October.
    15. Denuit, Michel & Robert, Christian Y., 2023. "Endowment contingency funds for mutual aid and public financing," LIDAM Discussion Papers ISBA 2023009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. An Chen & Thai Nguyen & Thorsten Sehner, 2022. "Unit-Linked Tontine: Utility-Based Design, Pricing and Performance," Risks, MDPI, vol. 10(4), pages 1-27, April.
    17. Diether Beuermann & Antonios Antoniou & Alejandro Bernales, 2005. "The Dynamics of the Short-Term Interest Rate in the UK," Finance 0512029, University Library of Munich, Germany.
    18. Jin-Chuan Duan & Kris Jacobs, 2001. "Short and Long Memory in Equilibrium Interest Rate Dynamics," CIRANO Working Papers 2001s-22, CIRANO.
    19. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    20. Moshe A. Milevsky & Thomas S. Salisbury, 2024. "The Riccati Tontine: How to Satisfy Regulators on Average," Papers 2402.14555, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:6:p:121-:d:836446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.