Consumer Bankruptcy Prediction Using Balanced and Imbalanced Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Stefania Albanesi & Domonkos F. Vamossy, 2019.
"Predicting Consumer Default: A Deep Learning Approach,"
Papers
1908.11498, arXiv.org, revised Oct 2019.
- Stefania Albanesi & Domonkos F. Vamossy, 2019. "Predicting Consumer Default: A Deep Learning Approach," Working Papers 2019-056, Human Capital and Economic Opportunity Working Group.
- Albanesi, Stefania & Vamossy, Domonkos, 2019. "Predicting Consumer Default: A Deep Learning Approach," CEPR Discussion Papers 13914, C.E.P.R. Discussion Papers.
- Stefania Albanesi & Domonkos F. Vamossy, 2019. "Predicting Consumer Default: A Deep Learning Approach," NBER Working Papers 26165, National Bureau of Economic Research, Inc.
- Scott Fay & Erik Hurst & Michelle J. White, 2002. "The Household Bankruptcy Decision," American Economic Review, American Economic Association, vol. 92(3), pages 706-718, June.
- Zeineb Affes & Rania Hentati-Kaffel, 2019. "Predicting US Banks Bankruptcy: Logit Versus Canonical Discriminant Analysis," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03045837, HAL.
- Paige Marta Skiba & Jeremy Tobacman, 2019. "Do Payday Loans Cause Bankruptcy?," Journal of Law and Economics, University of Chicago Press, vol. 62(3), pages 485-519.
- Zeineb Affes & Rania Hentati-Kaffel, 2019. "Predicting US Banks Bankruptcy: Logit Versus Canonical Discriminant Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 199-244, June.
- Leila Bateni & Farshid Asghari, 2020. "Bankruptcy Prediction Using Logit and Genetic Algorithm Models: A Comparative Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 335-348, January.
- Zeineb Affes & Rania Hentati-Kaffel, 2016.
"Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis,"
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers)
halshs-01281948, HAL.
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Documents de travail du Centre d'Economie de la Sorbonne 16016, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Zeineb Affes & Rania Hentati-Kaffel, 2019. "Predicting US Banks Bankruptcy: Logit Versus Canonical Discriminant Analysis," Post-Print hal-03045837, HAL.
- Agata M. Lozinskaia & Evgeniy M. Ozhegov & Alexander M. Karminsky, 2016. "Discontinuity in Relative Credit Losses: Evidence from Defaults on Government-Insured Residential Mortgages," HSE Working papers WP BRP 55/FE/2016, National Research University Higher School of Economics.
- Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Youssef Zizi & Amine Jamali-Alaoui & Badreddine El Goumi & Mohamed Oudgou & Abdeslam El Moudden, 2021. "An Optimal Model of Financial Distress Prediction: A Comparative Study between Neural Networks and Logistic Regression," Risks, MDPI, vol. 9(11), pages 1-24, November.
- Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
- Elena Gregova & Katarina Valaskova & Peter Adamko & Milos Tumpach & Jaroslav Jaros, 2020. "Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
- O. Vasiurenko & V. LYASHENKO, 2020. "Wavelet coherence as a tool for retrospective analysis of bank activities," Economy and Forecasting, Valeriy Heyets, issue 2, pages 43-60.
- Petra Posedel v{S}imovi'c & Davor Horvatic & Edward W. Sun, 2021. "Classifying variety of customer's online engagement for churn prediction with mixed-penalty logistic regression," Papers 2105.07671, arXiv.org, revised Jul 2021.
- Petra P. Šimović & Claire Y. T. Chen & Edward W. Sun, 2023. "Classifying the Variety of Customers’ Online Engagement for Churn Prediction with a Mixed-Penalty Logistic Regression," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 451-485, January.
- Manthoulis, Georgios & Doumpos, Michalis & Zopounidis, Constantin & Galariotis, Emilios, 2020. "An ordinal classification framework for bank failure prediction: Methodology and empirical evidence for US banks," European Journal of Operational Research, Elsevier, vol. 282(2), pages 786-801.
- Martina Mokrišová & Jarmila Horváthová, 2023. "Domain Knowledge Features versus LASSO Features in Predicting Risk of Corporate Bankruptcy—DEA Approach," Risks, MDPI, vol. 11(11), pages 1-18, November.
- Citterio, Alberto, 2024. "Bank failure prediction models: Review and outlook," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.
- Danisewicz, Piotr & Elard, Ilaf, 2023. "The real effects of financial technology: Marketplace lending and personal bankruptcy," Journal of Banking & Finance, Elsevier, vol. 155(C).
- James R. Barth & Jitka Hilliard & John S. Jahera & Kang B. Lee & Yanfei Sun, 2020. "Payday lending, crime, and bankruptcy: Is there a connection?," Journal of Consumer Affairs, Wiley Blackwell, vol. 54(4), pages 1159-1177, December.
- Alessandro Bitetto & Stefano Filomeni & Michele Modina, 2021. "Understanding corporate default using Random Forest: The role of accounting and market information," DEM Working Papers Series 205, University of Pavia, Department of Economics and Management.
- Ilyes Abid & Rim Ayadi & Khaled Guesmi & Farid Mkaouar, 2022. "A new approach to deal with variable selection in neural networks: an application to bankruptcy prediction," Annals of Operations Research, Springer, vol. 313(2), pages 605-623, June.
- McCarthy, Patrick, 2024. "Predicting trips to health care facilities: A binary logit and receiver operating characteristics (ROC) approach," Research in Transportation Economics, Elsevier, vol. 103(C).
- Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Documents de travail du Centre d'Economie de la Sorbonne 16026, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01314553, HAL.
- Marco Botta & Luca Colombo, 2016. "Macroeconomic and Institutional Determinants of Capital Structure Decisions," DISCE - Working Papers del Dipartimento di Economia e Finanza def038, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
- Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
More about this item
Keywords
bankruptcy of households; prediction; logit; US; household finance; choice-based sample;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:2:p:24-:d:727536. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.