IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v10y2022i12p222-d980517.html
   My bibliography  Save this article

Dynamic Assessment of Cyber Threats in the Field of Insurance

Author

Listed:
  • Lukáš Pavlík

    (Department of Civil Protection, Tomas Bata University in Zlin, Studentské nám. 1532, Mařatice, 686 01 Uherské Hradiště, Czech Republic)

  • Martin Ficek

    (Department of Civil Protection, Tomas Bata University in Zlin, Studentské nám. 1532, Mařatice, 686 01 Uherské Hradiště, Czech Republic)

  • Jakub Rak

    (Department of Civil Protection, Tomas Bata University in Zlin, Studentské nám. 1532, Mařatice, 686 01 Uherské Hradiště, Czech Republic)

Abstract

The area of digital technologies is currently the subject of many cyber threats, the frequency of which is increasing. One of the areas of cyber security is also the creation of models and estimates of the process of cyber threats and their possible financial impacts. However, some studies show that cyber-threat assessment to identify potential financial impacts for organizations is a very challenging process. A relatively large problem here is the detection of scenarios of cyber threats and their expression in time. This paper focuses on the design of an algorithm that can be applied to the field of cyber-threat assessment in order to express the financial impacts. The study is based on an in-depth analysis of the insurance industry. The results obtained in our research show the importance of the time perspective for determining the potential financial impacts of cyber threats for the field of insurance.

Suggested Citation

  • Lukáš Pavlík & Martin Ficek & Jakub Rak, 2022. "Dynamic Assessment of Cyber Threats in the Field of Insurance," Risks, MDPI, vol. 10(12), pages 1-21, November.
  • Handle: RePEc:gam:jrisks:v:10:y:2022:i:12:p:222-:d:980517
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/10/12/222/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/10/12/222/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Annette Hofmann, 2007. "Internalizing externalities of loss prevention through insurance monopoly: an analysis of interdependent risks," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 32(1), pages 91-111, June.
    2. Daniel Woods & Andrew Simpson, 2017. "Policy measures and cyber insurance: a framework," Journal of Cyber Policy, Taylor & Francis Journals, vol. 2(2), pages 209-226, May.
    3. Kjartan Palsson & Steinn Gudmundsson & Sachin Shetty, 2020. "Analysis of the impact of cyber events for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 564-579, October.
    4. Christian Biener & Martin Eling & Jan Hendrik Wirfs, 2015. "Insurability of Cyber Risk: An Empirical Analysis†," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 40(1), pages 131-158, January.
    5. Eling, Martin & Wirfs, Jan Hendrik, 2016. "Cyber Risk: Too Big to Insure? Risk Transfer Options for a mercurial risk class," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 59, number 59.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dirk Wrede & Tino Stegen & Johann-Matthias Schulenburg, 2020. "Affirmative and silent cyber coverage in traditional insurance policies: Qualitative content analysis of selected insurance products from the German insurance market," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 657-689, October.
    2. Antoine Bouveret, 2018. "Cyber Risk for the Financial Sector: A Framework for Quantitative Assessment," IMF Working Papers 2018/143, International Monetary Fund.
    3. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    4. Martin Eling & Kwangmin Jung, 2022. "Heterogeneity in cyber loss severity and its impact on cyber risk measurement," Risk Management, Palgrave Macmillan, vol. 24(4), pages 273-297, December.
    5. Angelica Marotta & Michael McShane, 2018. "Integrating a Proactive Technique Into a Holistic Cyber Risk Management Approach," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 21(3), pages 435-452, December.
    6. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.
    7. Ulrik Franke, 2020. "IT service outage cost: case study and implications for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 760-784, October.
    8. Michael McShane & Trung Nguyen, 2020. "Time-varying effects of cyberattacks on firm value," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 580-615, October.
    9. Richard Peter, 2024. "The economics of self-protection," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 49(1), pages 6-35, March.
    10. Ajjima Jiravichai & Ruth Banomyong, 2022. "A Proposed Methodology for Literature Review on Operational Risk Management in Banks," Risks, MDPI, vol. 10(5), pages 1-18, May.
    11. Xiaoying Xie & Charles Lee & Martin Eling, 2020. "Cyber insurance offering and performance: an analysis of the U.S. cyber insurance market," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 690-736, October.
    12. Uddin, Md Hamid & Mollah, Sabur & Islam, Nazrul & Ali, Md Hakim, 2023. "Does digital transformation matter for operational risk exposure?," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    13. Farkas, Sébastien & Lopez, Olivier & Thomas, Maud, 2021. "Cyber claim analysis using Generalized Pareto regression trees with applications to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 92-105.
    14. Ulrik Franke, 0. "IT service outage cost: case study and implications for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 0, pages 1-25.
    15. Ellis, Randall P. & Jiang, Shenyi & Manning, Willard G., 2015. "Optimal health insurance for multiple goods and time periods," Journal of Health Economics, Elsevier, vol. 41(C), pages 89-106.
    16. Zängerle, Daniel & Schiereck, Dirk, 2022. "Modelling and predicting enterprise‑level cyber risks in the context of sparse data availability," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136276, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    17. Sachin Shetty & Michael McShane & Linfeng Zhang & Jay P. Kesan & Charles A. Kamhoua & Kevin Kwiat & Laurent L. Njilla, 2018. "Reducing Informational Disadvantages to Improve Cyber Risk Management†," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 43(2), pages 224-238, April.
    18. Shah, Anand, 2016. "Pricing and Risk Mitigation Analysis of a Cyber Liability Insurance using Gaussian, t and Gumbel Copulas – A case for Cyber Risk Index," MPRA Paper 111968, University Library of Munich, Germany.
    19. Aldasoro, Iñaki & Gambacorta, Leonardo & Giudici, Paolo & Leach, Thomas, 2022. "The drivers of cyber risk," Journal of Financial Stability, Elsevier, vol. 60(C).
    20. Martin Eling & Davide Nuessle & Julian Staubli, 2022. "The impact of artificial intelligence along the insurance value chain and on the insurability of risks," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(2), pages 205-241, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:12:p:222-:d:980517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.