IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v9y2020i9p106-d406364.html
   My bibliography  Save this article

Supply Risk Considerations for the Elements in Nickel-Based Superalloys

Author

Listed:
  • Christoph Helbig

    (Resource Lab, University of Augsburg, Universitaetsstr. 16, 86159 Augsburg, Germany)

  • Alex M. Bradshaw

    (Max Planck Institute for Plasma Physics, Boltzmannstraße 2, 85748 Garching, Germany
    Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany)

  • Andrea Thorenz

    (Resource Lab, University of Augsburg, Universitaetsstr. 16, 86159 Augsburg, Germany)

  • Axel Tuma

    (Resource Lab, University of Augsburg, Universitaetsstr. 16, 86159 Augsburg, Germany)

Abstract

Nickel-based superalloys contain various elements which are added in order to make the alloys more resistant to thermal and mechanical stress and to the adverse operating environments in jet engines. In particular, higher combustion temperatures in the gas turbine are important, since they result in higher fuel efficiency and thus in lower CO 2 emissions. In this paper, a semi-quantitative assessment scheme is used to evaluate the relative supply risks associated with elements contained in various Ni-based superalloys: aluminium, titanium, chromium, iron, cobalt, niobium, molybdenum, ruthenium, tantalum, tungsten, and rhenium. Twelve indicators on the elemental level and four aggregation methods are applied in order to obtain the supply risk at the alloy level. The supply risks for the elements rhenium, molybdenum and cobalt are found to be the highest. For three of the aggregation schemes, the spread in supply risk values for the different alloy types (as characterized by chemical composition and the endurance temperature) is generally narrow. The fourth, namely the cost-share’ aggregation scheme, gives rise to a broader distribution of supply risk values. This is mainly due to the introduction of rhenium as a component starting with second-generation single crystal alloys. The resulting higher supply risk appears, however, to be acceptable for jet engine applications due to the higher temperatures these alloys can endure.

Suggested Citation

  • Christoph Helbig & Alex M. Bradshaw & Andrea Thorenz & Axel Tuma, 2020. "Supply Risk Considerations for the Elements in Nickel-Based Superalloys," Resources, MDPI, vol. 9(9), pages 1-16, August.
  • Handle: RePEc:gam:jresou:v:9:y:2020:i:9:p:106-:d:406364
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/9/9/106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/9/9/106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Griffin, Gillian & Gaustad, Gabrielle & Badami, Kedar, 2019. "A framework for firm-level critical material supply management and mitigation," Resources Policy, Elsevier, vol. 60(C), pages 262-276.
    2. Helbig, Christoph & Bradshaw, Alex M. & Kolotzek, Christoph & Thorenz, Andrea & Tuma, Axel, 2016. "Supply risks associated with CdTe and CIGS thin-film photovoltaics," Applied Energy, Elsevier, vol. 178(C), pages 422-433.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Helbig & Martin Bruckler & Andrea Thorenz & Axel Tuma, 2021. "An Overview of Indicator Choice and Normalization in Raw Material Supply Risk Assessments," Resources, MDPI, vol. 10(8), pages 1-26, August.
    2. Werner, Tim T. & Mudd, Gavin M. & Jowitt, Simon M. & Huston, David, 2023. "Rhenium mineral resources: A global assessment," Resources Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Shiwei & Duan, Haoran & Cheng, Jinhua, 2021. "An evaluation of the supply risk for China's strategic metallic mineral resources," Resources Policy, Elsevier, vol. 70(C).
    2. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Song, Huiling & Wang, Chang & Lei, Xiaojie & Zhang, Hongwei, 2022. "Dynamic dependence between main-byproduct metals and the role of clean energy market," Energy Economics, Elsevier, vol. 108(C).
    4. Vidal, Rosario & Alberola-Borràs, Jaume-Adrià & Mora-Seró, Iván, 2020. "Abiotic depletion and the potential risk to the supply of cesium," Resources Policy, Elsevier, vol. 68(C).
    5. Simon Glöser-Chahoud & Luis Tercero Espinoza & Rainer Walz & Martin Faulstich, 2016. "Taking the Step towards a More Dynamic View on Raw Material Criticality: An Indicator Based Analysis for Germany and Japan," Resources, MDPI, vol. 5(4), pages 1-16, December.
    6. Zheng, Biao & Zhang, Yuquan & Chen, Yufeng, 2021. "Asymmetric connectedness and dynamic spillovers between renewable energy and rare earth markets in China: Evidence from firms’ high-frequency data," Resources Policy, Elsevier, vol. 71(C).
    7. Mei, Yueru & Geng, Yong & Xiao, Shijiang & Su, Chang & Gao, Ziyan & Wei, Wendong, 2023. "Dynamic material flow analysis of rhenium in China for 2011–2020," Resources Policy, Elsevier, vol. 86(PB).
    8. Khurshid, Adnan & Chen, Yufeng & Rauf, Abdur & Khan, Khalid, 2023. "Critical metals in uncertainty: How Russia-Ukraine conflict drives their prices?," Resources Policy, Elsevier, vol. 85(PB).
    9. Salim, Hengky & Sahin, Oz & Elsawah, Sondoss & Turan, Hasan & Stewart, Rodney A., 2022. "A critical review on tackling complex rare earth supply security problem," Resources Policy, Elsevier, vol. 77(C).
    10. Steffen Kiemel & Simon Glöser-Chahoud & Lara Waltersmann & Maximilian Schutzbach & Alexander Sauer & Robert Miehe, 2021. "Assessing the Application-Specific Substitutability of Lithium-Ion Battery Cathode Chemistries Based on Material Criticality, Performance, and Price," Resources, MDPI, vol. 10(9), pages 1-27, August.
    11. Armin Razmjoo & Mostafa Rezaei & Seyedali Mirjalili & Meysam Majidi Nezhad & Giuseppe Piras, 2021. "Development of Sustainable Energy Use with Attention to Fruitful Policy," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    12. Geng, Shuai & Lin, Lijun, 2018. "The extensible evaluation framework of urban green house gas emission reduction responsibility: A case of Shandong province in China," Energy, Elsevier, vol. 162(C), pages 171-184.
    13. Victoria E. Huntington & Frédéric Coulon & Stuart T. Wagland, 2022. "Innovative Resource Recovery from Industrial Sites: A Critical Review," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    14. Kim Maya Yavor & Vanessa Bach & Matthias Finkbeiner, 2021. "Resource Assessment of Renewable Energy Systems—A Review," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    15. Greenwood, Matthew & Wentker, Marc & Leker, Jens, 2021. "A region-specific raw material and lithium-ion battery criticality methodology with an assessment of NMC cathode technology," Applied Energy, Elsevier, vol. 302(C).
    16. Alexandra Leader & Gabrielle Gaustad, 2019. "Critical Material Applications and Intensities in Clean Energy Technologies," Clean Technol., MDPI, vol. 1(1), pages 1-21, August.
    17. Ren, Kaipeng & Tang, Xu & Höök, Mikael, 2021. "Evaluating metal constraints for photovoltaics: Perspectives from China’s PV development," Applied Energy, Elsevier, vol. 282(PA).
    18. Wang, Peng & Chen, Li-Yang & Ge, Jian-Ping & Cai, Wenjia & Chen, Wei-Qiang, 2019. "Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Gervais, Estelle & Shammugam, Shivenes & Friedrich, Lorenz & Schlegl, Thomas, 2021. "Raw material needs for the large-scale deployment of photovoltaics – Effects of innovation-driven roadmaps on material constraints until 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Christoph Helbig & Martin Bruckler & Andrea Thorenz & Axel Tuma, 2021. "An Overview of Indicator Choice and Normalization in Raw Material Supply Risk Assessments," Resources, MDPI, vol. 10(8), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:9:y:2020:i:9:p:106-:d:406364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.