IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v6y2017i1p9-d89158.html
   My bibliography  Save this article

Key Issues of Interdisciplinary NEXUS Governance Analyses: Lessons Learned from Research on Integrated Water Resources Management

Author

Listed:
  • Nina Hagemann

    (Department of Economics, Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 04318 Leipzig, Germany)

  • Sabrina Kirschke

    (Department of Aquatic Ecosystems Analysis and Management, Helmholtz Centre for Environmental Research—UFZ, Brueckstrasse 3a, 39114 Magdeburg, Germany)

Abstract

Governance has become a cornerstone in addressing complex linkages between multiple resources such as water, energy, and food. However, contributions of governance research in interdisciplinary research projects are either lacking or highly controversial. Drawing on Integrated Water Resources Management-related experiences of German research projects in emerging and developing countries, we demonstrate how to strengthen NEXUS-related governance analyses: There has to be a stronger focus on the analyses of existing and useful governance strategies as well as of conditions for governance transitions; governance analyses should refer to different types of problems, instead of only focusing on single cases and abstract analyses; and answers must be based on a more elaborate practice of inter- and transdisciplinary research. These suggestions should be implemented on the level of single researchers, but should also require incentives on an institutional level.

Suggested Citation

  • Nina Hagemann & Sabrina Kirschke, 2017. "Key Issues of Interdisciplinary NEXUS Governance Analyses: Lessons Learned from Research on Integrated Water Resources Management," Resources, MDPI, vol. 6(1), pages 1-8, January.
  • Handle: RePEc:gam:jresou:v:6:y:2017:i:1:p:9-:d:89158
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/6/1/9/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/6/1/9/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vanham, D., 2016. "Does the water footprint concept provide relevant information to address the water–food–energy–ecosystem nexus?," Ecosystem Services, Elsevier, vol. 17(C), pages 298-307.
    2. Jahn, Thomas & Bergmann, Matthias & Keil, Florian, 2012. "Transdisciplinarity: Between mainstreaming and marginalization," Ecological Economics, Elsevier, vol. 79(C), pages 1-10.
    3. Hamiche, Ait Mimoune & Stambouli, Amine Boudghene & Flazi, Samir, 2016. "A review of the water-energy nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 319-331.
    4. Howarth, Candice & Monasterolo, Irene, 2016. "Understanding barriers to decision making in the UK energy-food-water nexus: The added value of interdisciplinary approaches," Environmental Science & Policy, Elsevier, vol. 61(C), pages 53-60.
    5. Cairns, Rose & Krzywoszynska, Anna, 2016. "Anatomy of a buzzword: The emergence of ‘the water-energy-food nexus’ in UK natural resource debates," Environmental Science & Policy, Elsevier, vol. 64(C), pages 164-170.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    2. Märker, Carolin & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "Integrated governance for the food–energy–water nexus – The scope of action for institutional change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 290-300.
    3. Owen, Anne & Scott, Kate & Barrett, John, 2018. "Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus," Applied Energy, Elsevier, vol. 210(C), pages 632-642.
    4. Adenike K. Opejin & Rimjhim M. Aggarwal & Dave D. White & J. Leah Jones & Ross Maciejewski & Giuseppe Mascaro & Hessam S. Sarjoughian, 2020. "A Bibliometric Analysis of Food-Energy-Water Nexus Literature," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    5. Aamir Mehmood Shah & Gengyuan Liu & Fanxin Meng & Qing Yang & Jingyan Xue & Stefano Dumontet & Renato Passaro & Marco Casazza, 2021. "A Review of Urban Green and Blue Infrastructure from the Perspective of Food-Energy-Water Nexus," Energies, MDPI, vol. 14(15), pages 1-24, July.
    6. Hoolohan, Claire & McLachlan, Carly & Larkin, Alice, 2019. "‘Aha’ moments in the water-energy-food nexus: A new morphological scenario method to accelerate sustainable transformation," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    7. Di Felice, Louisa Jane & Ripa, Maddalena & Giampietro, Mario, 2019. "An alternative to market-oriented energy models: Nexus patterns across hierarchical levels," Energy Policy, Elsevier, vol. 126(C), pages 431-443.
    8. Michalec, Aleksandra & Hayes, Enda & Longhurst, James & Tudgey, David, 2019. "Enhancing the communication potential of smart metering for energy and water," Utilities Policy, Elsevier, vol. 56(C), pages 33-40.
    9. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    10. Papapostolou, Christiana M. & Kondili, Emilia M. & Zafirakis, Dimitris P. & Tzanes, Georgios T., 2020. "Sustainable water supply systems for the islands: The integration with the energy problem," Renewable Energy, Elsevier, vol. 146(C), pages 2577-2588.
    11. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    12. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    13. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    14. Juerges, Nataly & Jahn, Stephanie, 2020. "German forest management stakeholders at the science-society interface: Their views on problem definition, knowledge production and research utilization," Forest Policy and Economics, Elsevier, vol. 111(C).
    15. Eastwood, C.R. & Turner, F.J. & Romera, A.J., 2022. "Farmer-centred design: An affordances-based framework for identifying processes that facilitate farmers as co-designers in addressing complex agricultural challenges," Agricultural Systems, Elsevier, vol. 195(C).
    16. Arora-Jonsson, Seema, 2016. "Does resilience have a culture? Ecocultures and the politics of knowledge production," Ecological Economics, Elsevier, vol. 121(C), pages 98-107.
    17. Min Ge & Kaili Yu & Ange Ding & Gaofeng Liu, 2022. "Input-Output Efficiency of Water-Energy-Food and Its Driving Forces: Spatial-Temporal Heterogeneity of Yangtze River Economic Belt, China," IJERPH, MDPI, vol. 19(3), pages 1-15, January.
    18. Cano-Rodríguez, Sara & Rubio-Varas, Mar & Sesma-Martín, Diego, 2022. "At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019," Ecological Economics, Elsevier, vol. 195(C).
    19. Martinez-Hernandez, Elias & Leach, Matthew & Yang, Aidong, 2017. "Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym," Applied Energy, Elsevier, vol. 206(C), pages 1009-1021.
    20. Alireza Taghdisian & Sandra G. F. Bukkens & Mario Giampietro, 2022. "A Societal Metabolism Approach to Effectively Analyze the Water–Energy–Food Nexus in an Agricultural Transboundary River Basin," Sustainability, MDPI, vol. 14(15), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:6:y:2017:i:1:p:9-:d:89158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.