IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i3p1340-d734034.html
   My bibliography  Save this article

Input-Output Efficiency of Water-Energy-Food and Its Driving Forces: Spatial-Temporal Heterogeneity of Yangtze River Economic Belt, China

Author

Listed:
  • Min Ge

    (Business School, Hohai University, Changzhou 213022, China)

  • Kaili Yu

    (Business School, Hohai University, Changzhou 213022, China)

  • Ange Ding

    (Business School, Hohai University, Changzhou 213022, China)

  • Gaofeng Liu

    (Business School, Hohai University, Changzhou 213022, China)

Abstract

The high-quality development of the Yangtze River Economic Belt (YREB) plays a crucial role in economic transformation in China. Climate change, rapid population growth, and increased urbanization have contributed towards increased pressures on the water, energy, food (WEF) nexus system of YREB. Thus, there is an imperative need to improve the efficiency of WEF in YREB. However, few studies have conducted spatial-temporal heterogeneity exploration of YREB about the input-output efficiency of WEF (IOE-WEF). Using panel data from 2008–2017, a super slack based model (SSBM), combined with the spatial autocorrelation and spatial econometric method, were proposed to calculate the IOE-WEF of YREB’s 11 provinces, the results indicated that: (1) From the perspective of time, the IOE-WEF in YREB was relatively low and displayed a fluctuating downward pattern while considering the undesirable outputs. (2) From the perspective of space, the spatial distribution of IOE-WEF in YREB was uneven. The efficiency values of the three sub-regions of YREB were “the lower reaches > the middle reaches > the upper reaches”. The IOE-WEF of YREB had a prominent positive spatial correlation and also had a spatial spillover effect. (3) The spatial aggregation effect of IOE-WEF of YREB is gradually weakening. The spatial aggregation types of IOE-WEF in YREB were “high-high” cluster areas in lower reaches and “low-low” cluster areas in upper reaches. (4) From the perspective of driving forces, environmental regulation and technological innovation promoted the improvement of IOE-WEF of YREB, while the industrial structure and mechanization level inhibited the improvement of IOE-WEF of YREB. Furthermore, the role of government support of IOE-WEF of YREB was not obvious. The improvement of IOE-WEF in adjacent regions also had a notable positive spatial spillover effect on the region.

Suggested Citation

  • Min Ge & Kaili Yu & Ange Ding & Gaofeng Liu, 2022. "Input-Output Efficiency of Water-Energy-Food and Its Driving Forces: Spatial-Temporal Heterogeneity of Yangtze River Economic Belt, China," IJERPH, MDPI, vol. 19(3), pages 1-15, January.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:3:p:1340-:d:734034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/3/1340/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/3/1340/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. Daohan Huang & Zihao Shen & Chengshuang Sun & Guijun Li, 2021. "Shifting from Production-Based to Consumption-Based Nexus Governance: Evidence from an Input–Output Analysis of the Local Water-Energy-Food Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1673-1688, April.
    3. Wang, Keying & Wu, Meng & Sun, Yongping & Shi, Xunpeng & Sun, Ao & Zhang, Ping, 2019. "Resource abundance, industrial structure, and regional carbon emissions efficiency in China," Resources Policy, Elsevier, vol. 60(C), pages 203-214.
    4. Hua, En & Wang, Xinyu & Engel, Bernie A. & Qian, Haiyang & Sun, Shikun & Wang, Yubao, 2021. "Water competition mechanism of food and energy industries in WEF Nexus: A case study in China," Agricultural Water Management, Elsevier, vol. 254(C).
    5. Tang, Liwei & He, Gang, 2021. "How to improve total factor energy efficiency? An empirical analysis of the Yangtze River economic belt of China," Energy, Elsevier, vol. 235(C).
    6. Howarth, Candice & Monasterolo, Irene, 2016. "Understanding barriers to decision making in the UK energy-food-water nexus: The added value of interdisciplinary approaches," Environmental Science & Policy, Elsevier, vol. 61(C), pages 53-60.
    7. Wang, Shuhong & Zhao, Danqing & Chen, Hanxue, 2020. "Government corruption, resource misallocation, and ecological efficiency," Energy Economics, Elsevier, vol. 85(C).
    8. bahri, muhamad, 2020. "Analysis of the water, energy, and food nexus using system archetypes: A case study in the Jatiluhur reservoir, West Java, Indonesia," SocArXiv c9b7d, Center for Open Science.
    9. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    10. Xiao, Zhengyan & Yao, Meiqin & Tang, Xiaotong & Sun, Luxi, 2019. "Identifying critical supply chains: An input-output analysis for Food-Energy-Water Nexus in China," Ecological Modelling, Elsevier, vol. 392(C), pages 31-37.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    2. Juanjuan Tian & Xiaoqian Song & Jinsuo Zhang, 2022. "Spatial-Temporal Pattern and Driving Factors of Carbon Efficiency in China: Evidence from Panel Data of Urban Governance," Energies, MDPI, vol. 15(7), pages 1-24, March.
    3. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    4. Xiao Zhang & Di Wang, 2023. "Beyond the Ecological Boundary: A Quasi-Natural Experiment on the Impact of National Marine Parks on Eco-Efficiency in Coastal Cities," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    5. Honma, Satoshi, 2012. "Environmental and economic efficiencies in the Asia-Pacific region," MPRA Paper 43361, University Library of Munich, Germany.
    6. Senhua Huang & Lingming Chen, 2023. "The Impact of the Digital Economy on the Urban Total-Factor Energy Efficiency: Evidence from 275 Cities in China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    7. Zhipeng Yu & Yi Liu & Taihua Yan & Ming Zhang, 2024. "Carbon emission efficiency in the age of digital economy: New insights on green technology progress and industrial structure distortion," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 4039-4057, July.
    8. Pelloneová Natalie, 2023. "Evaluating Hockey Players Using Andersen and Petersen's Super-Efficiency Model: Who is the Best Czech Hockey Player in the NHL?," Polish Journal of Sport and Tourism, Sciendo, vol. 30(3), pages 23-28, September.
    9. Artur Wyszyński, 2017. "Sytuacja finansowa klubów Ekstraklasy w ujęciu metody DEA," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 2, pages 69-99.
    10. Zhao, Xing & Guo, Yifan & Feng, Tianchu, 2023. "Towards green recovery: Natural resources utilization efficiency under the impact of environmental information disclosure," Resources Policy, Elsevier, vol. 83(C).
    11. Mario Fortin & André Leclerc, 2011. "L’Efficience Des Cooperatives De Services Financiers: Une Analyse De La Contribution Du Milieu," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 82(1), pages 45-62, March.
    12. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    13. Fan Wang & Lili Feng & Jin Li & Lin Wang, 2020. "Environmental Regulation, Tenure Length of Officials, and Green Innovation of Enterprises," IJERPH, MDPI, vol. 17(7), pages 1-16, March.
    14. Shih-Heng Yu & Chia-Wei Hsu, 2020. "A unified extension of super-efficiency in additive data envelopment analysis with integer-valued inputs and outputs: an application to a municipal bus system," Annals of Operations Research, Springer, vol. 287(1), pages 515-535, April.
    15. Chia-Nan Wang & Jen-Der Day & Nguyen Thi Kim Lien & Luu Quoc Chien, 2018. "Integrating the Additive Seasonal Model and Super-SBM Model to Compute the Efficiency of Port Logistics Companies in Vietnam," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    16. Josef Jablonsky, 2022. "Individual and team efficiency: a case of the National Hockey League," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 479-494, June.
    17. Li, Ke & Lin, Boqiang, 2015. "Measuring green productivity growth of Chinese industrial sectors during 1998–2011," China Economic Review, Elsevier, vol. 36(C), pages 279-295.
    18. Vicente J. Bolós & Rafael Benítez & Vicente Coll-Serrano, 2023. "Continuous models combining slacks-based measures of efficiency and super-efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 363-391, June.
    19. Yung-ho Chiu & Chin-wei Huang & Chung-te Ting, 2012. "A non-radial measure of different systems for Taiwanese tourist hotels’ efficiency assessment," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 45-63, March.
    20. Guo, I-Lung & Lee, Hsuan-Shih & Lee, Dan, 2017. "An integrated model for slack-based measure of super-efficiency in additive DEA," Omega, Elsevier, vol. 67(C), pages 160-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:3:p:1340-:d:734034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.