IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v4y2015i1p155-171d46937.html
   My bibliography  Save this article

The Impact of Future Offshore Wind Farms on Wind Power Generation in Great Britain

Author

Listed:
  • Daniel R. Drew

    (Department of Meteorology, University of Reading, Reading RG6 6BB, UK)

  • Dirk J. Cannon

    (Department of Meteorology, University of Reading, Reading RG6 6BB, UK)

  • David J. Brayshaw

    (Department of Meteorology, University of Reading, Reading RG6 6BB, UK
    National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading RG6 6BB, UK)

  • Janet F. Barlow

    (Department of Meteorology, University of Reading, Reading RG6 6BB, UK)

  • Phil J. Coker

    (School of Construction Management and Engineering, University of Reading, Reading RG6 6AW, UK)

Abstract

In the coming years the geographical distribution of wind farms in Great Britain is expected to change significantly. Following the development of the “round 3” wind zones (circa 2025), most of the installed capacity will be located in large offshore wind farms. However, the impact of this change in wind-farm distribution on the characteristics of national wind generation is largely unknown. This study uses a 34-year reanalysis dataset (Modern-Era Retrospective Analysis for Research and Applications (MERRA) from National Aeronautics and Space Administration, Global Modeling and Assimilation Office (NASA-GMAO)) to produce a synthetic hourly time series of GB-aggregated wind generation based on: (1) the “current” wind farm distribution; and (2) a “future” wind farm distribution scenario. The derived data are used to estimate a climatology of extreme wind power events in Great Britain for each wind farm distribution. The impact of the changing wind farm distribution on the wind-power statistics is significant. The annual mean capacity factor increased from 32.7% for the current wind farm distribution to 39.7% for the future distribution. In addition, there are fewer periods of prolonged low generation and more periods of prolonged high generation. Finally, the frequency and magnitude of ramping in the nationally aggregated capacity factor remains largely unchanged. However, due to the increased capacity of the future distribution, in terms of power output, the magnitude of the ramping increases by a factor of 5.

Suggested Citation

  • Daniel R. Drew & Dirk J. Cannon & David J. Brayshaw & Janet F. Barlow & Phil J. Coker, 2015. "The Impact of Future Offshore Wind Farms on Wind Power Generation in Great Britain," Resources, MDPI, vol. 4(1), pages 1-17, March.
  • Handle: RePEc:gam:jresou:v:4:y:2015:i:1:p:155-171:d:46937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/4/1/155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/4/1/155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brayshaw, David James & Troccoli, Alberto & Fordham, Rachael & Methven, John, 2011. "The impact of large scale atmospheric circulation patterns on wind power generation and its potential predictability: A case study over the UK," Renewable Energy, Elsevier, vol. 36(8), pages 2087-2096.
    2. Snyder, Brian & Kaiser, Mark J., 2009. "Ecological and economic cost-benefit analysis of offshore wind energy," Renewable Energy, Elsevier, vol. 34(6), pages 1567-1578.
    3. Heptonstall, Philip & Gross, Robert & Greenacre, Philip & Cockerill, Tim, 2012. "The cost of offshore wind: Understanding the past and projecting the future," Energy Policy, Elsevier, vol. 41(C), pages 815-821.
    4. Sinden, Graham, 2007. "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand," Energy Policy, Elsevier, vol. 35(1), pages 112-127, January.
    5. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Karamanski & Gareth Erfort, 2023. "Wind Energy Supply Profiling and Offshore Potential in South Africa," Energies, MDPI, vol. 16(9), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hdidouan, Daniel & Staffell, Iain, 2017. "The impact of climate change on the levelised cost of wind energy," Renewable Energy, Elsevier, vol. 101(C), pages 575-592.
    2. Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
    3. Cradden, Lucy C. & McDermott, Frank & Zubiate, Laura & Sweeney, Conor & O'Malley, Mark, 2017. "A 34-year simulation of wind generation potential for Ireland and the impact of large-scale atmospheric pressure patterns," Renewable Energy, Elsevier, vol. 106(C), pages 165-176.
    4. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    5. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    6. Aldersey-Williams, John & Broadbent, Ian D. & Strachan, Peter A., 2020. "Analysis of United Kingdom offshore wind farm performance using public data: Improving the evidence base for policymaking," Utilities Policy, Elsevier, vol. 62(C).
    7. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    8. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    9. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    10. Candelise, Chiara & Westacott, Paul, 2017. "Can integration of PV within UK electricity network be improved? A GIS based assessment of storage," Energy Policy, Elsevier, vol. 109(C), pages 694-703.
    11. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    12. McInerney, Celine & Bunn, Derek W., 2017. "Optimal over installation of wind generation facilities," Energy Economics, Elsevier, vol. 61(C), pages 87-96.
    13. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    14. Aldersey-Williams, John & Broadbent, Ian D. & Strachan, Peter A., 2019. "Better estimates of LCOE from audited accounts – A new methodology with examples from United Kingdom offshore wind and CCGT," Energy Policy, Elsevier, vol. 128(C), pages 25-35.
    15. Salo, Olli & Syri, Sanna, 2014. "What economic support is needed for Arctic offshore wind power?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 343-352.
    16. Kubik, M.L. & Brayshaw, D.J. & Coker, P.J. & Barlow, J.F., 2013. "Exploring the role of reanalysis data in simulating regional wind generation variability over Northern Ireland," Renewable Energy, Elsevier, vol. 57(C), pages 558-561.
    17. Poulsen, Thomas & Lema, Rasmus, 2017. "Is the supply chain ready for the green transformation? The case of offshore wind logistics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 758-771.
    18. Commin, Andrew N. & French, Andrew S. & Marasco, Matteo & Loxton, Jennifer & Gibb, Stuart W. & McClatchey, John, 2017. "The influence of the North Atlantic Oscillation on diverse renewable generation in Scotland," Applied Energy, Elsevier, vol. 205(C), pages 855-867.
    19. Früh, Wolf-Gerrit, 2013. "Long-term wind resource and uncertainty estimation using wind records from Scotland as example," Renewable Energy, Elsevier, vol. 50(C), pages 1014-1026.
    20. Sharp, Ed & Dodds, Paul & Barrett, Mark & Spataru, Catalina, 2015. "Evaluating the accuracy of CFSR reanalysis hourly wind speed forecasts for the UK, using in situ measurements and geographical information," Renewable Energy, Elsevier, vol. 77(C), pages 527-538.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:4:y:2015:i:1:p:155-171:d:46937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.