IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v3y2014i2p454-470d36494.html
   My bibliography  Save this article

Analysis of North Sea Offshore Wind Power Variability

Author

Listed:
  • Aymeric Buatois

    (Department of Electrical Sustainable Energy, Delft University of Technology, Mekelweg 4, Delft 2628 CD, The Netherlands)

  • Madeleine Gibescu

    (Department of Electrical Sustainable Energy, Delft University of Technology, Mekelweg 4, Delft 2628 CD, The Netherlands
    Department of Electrical Engineering, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5612 AZ, The Netherlands)

  • Barry G. Rawn

    (Departement Elektrotechniek, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, Leuven 3001, Belgium)

  • Mart A.M.M. Van der Meijden

    (Department of Electrical Sustainable Energy, Delft University of Technology, Mekelweg 4, Delft 2628 CD, The Netherlands)

Abstract

This paper evaluates, for a 2030 scenario, the impact on onshore power systems in terms of the variability of the power generated by 81 GW of offshore wind farms installed in the North Sea. Meso-scale reanalysis data are used as input for computing the hourly power production for offshore wind farms, and this total production is analyzed to identify the largest aggregated hourly power variations. Based on publicly available information, a simplified representation of the coastal power grid is built for the countries bordering the North Sea. Wind farms less than 60 km from shore are connected radially to the mainland, while the rest are connected to a hypothetical offshore HVDC (High-Voltage Direct Current) power grid, designed such that wind curtailment does not exceed 1% of production. Loads and conventional power plants by technology and associated cost curves are computed for the various national power systems, based on 2030 projections. Using the MATLAB-based MATPOWER toolbox, the hourly optimal power flow for this regional hybrid AC/DC grid is computed for high, low and medium years from the meso-scale database. The largest net load variations are evaluated per market area and related to the extra load-following reserves that may be needed from conventional generators.

Suggested Citation

  • Aymeric Buatois & Madeleine Gibescu & Barry G. Rawn & Mart A.M.M. Van der Meijden, 2014. "Analysis of North Sea Offshore Wind Power Variability," Resources, MDPI, vol. 3(2), pages 1-17, May.
  • Handle: RePEc:gam:jresou:v:3:y:2014:i:2:p:454-470:d:36494
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/3/2/454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/3/2/454/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. De Decker, Jan & Woyte, Achim, 2013. "Review of the various proposals for the European offshore grid," Renewable Energy, Elsevier, vol. 49(C), pages 58-62.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felipe M. Pimenta & Allan R. Silva & Arcilan T. Assireu & Vinicio de S. e Almeida & Osvaldo R. Saavedra, 2019. "Brazil Offshore Wind Resources and Atmospheric Surface Layer Stability," Energies, MDPI, vol. 12(21), pages 1-21, November.
    2. Ramirez, Dionisio & Martinez-Rodrigo, Fernando & de Pablo, Santiago & Carlos Herrero-de Lucas, Luis, 2017. "Assessment of a non linear current control technique applied to MMC-HVDC during grid disturbances," Renewable Energy, Elsevier, vol. 101(C), pages 945-963.
    3. Martinez-Rodrigo, Fernando & de Pablo, Santiago & Herrero-de Lucas, L. Carlos, 2015. "Current control of a modular multilevel converter for HVDC applications," Renewable Energy, Elsevier, vol. 83(C), pages 318-331.
    4. Ruddy, Jonathan & Meere, Ronan & O’Donnell, Terence, 2016. "Low Frequency AC transmission for offshore wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 75-86.
    5. Askeland, Kristine & Bozhkova, Kristina N. & Sorknæs, Peter, 2019. "Balancing Europe: Can district heating affect the flexibility potential of Norwegian hydropower resources?," Renewable Energy, Elsevier, vol. 141(C), pages 646-656.
    6. Shariat Torbaghan, Shahab & Müller, Hannah K. & Gibescu, Madeleine & van der Meijden, Mart & Roggenkamp, Martha, 2015. "The legal and economic impacts of implementing a joint feed-in premium support scheme on the development of an offshore grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 263-277.
    7. Roussanaly, S. & Aasen, A. & Anantharaman, R. & Danielsen, B. & Jakobsen, J. & Heme-De-Lacotte, L. & Neji, G. & Sødal, A. & Wahl, P.E. & Vrana, T.K. & Dreux, R., 2019. "Offshore power generation with carbon capture and storage to decarbonise mainland electricity and offshore oil and gas installations: A techno-economic analysis," Applied Energy, Elsevier, vol. 233, pages 478-494.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:3:y:2014:i:2:p:454-470:d:36494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.