IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v3y2014i1p215-234d33504.html
   My bibliography  Save this article

Consideration of Wind Speed Variability in Creating a Regional Aggregate Wind Power Time Series

Author

Listed:
  • Lucy C. Cradden

    (School of Engineering, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JL, UK)

  • Francesco Restuccia

    (Department of Mechanical and Civil Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA)

  • Samuel L. Hawkins

    (Vattenfall Wind Power, The Tun Building, 4 Jackson's Entry, Holyrood Road, Edinburgh EH8 8PJ, UK)

  • Gareth P. Harrison

    (School of Engineering, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JL, UK)

Abstract

For the purposes of understanding the impacts on the electricity network, estimates of hourly aggregate wind power generation for a region are required. However, the availability of wind production data for the UK is limited, and studies often rely on measured wind speeds from a network of meteorological (met) stations. Another option is to use historical wind speeds from a reanalysis dataset, with a resolution of around 40–50 km. Mesoscale models offer a potentially more desirable solution, with a homogeneous set of wind speeds covering a wide area at resolutions of 1–50 km, but they are computationally expensive to run at high resolution. An understanding of the most appropriate choice of data requires knowledge of the variability in time and space and how well that is represented by the choice of model. Here it is demonstrated that in regions offshore, or in relatively smooth terrain where variability in wind speeds is smaller, lower resolution models or single point records may suffice to represent aggregate power generation in a sub-region. The need for high resolution modelling in areas of complex terrain where spatial and temporal variability is higher is emphasised, particularly when the distribution of wind generation capacity is uneven over the region.

Suggested Citation

  • Lucy C. Cradden & Francesco Restuccia & Samuel L. Hawkins & Gareth P. Harrison, 2014. "Consideration of Wind Speed Variability in Creating a Regional Aggregate Wind Power Time Series," Resources, MDPI, vol. 3(1), pages 1-20, February.
  • Handle: RePEc:gam:jresou:v:3:y:2014:i:1:p:215-234:d:33504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/3/1/215/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/3/1/215/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kubik, M.L. & Brayshaw, D.J. & Coker, P.J. & Barlow, J.F., 2013. "Exploring the role of reanalysis data in simulating regional wind generation variability over Northern Ireland," Renewable Energy, Elsevier, vol. 57(C), pages 558-561.
    2. Sinden, Graham, 2007. "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand," Energy Policy, Elsevier, vol. 35(1), pages 112-127, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Díaz, H. & Silva, D. & Bernardo, C. & Guedes Soares, C., 2023. "Micro sitting of floating wind turbines in a wind farm using a multi-criteria framework," Renewable Energy, Elsevier, vol. 204(C), pages 449-474.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
    2. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    3. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    4. Hdidouan, Daniel & Staffell, Iain, 2017. "The impact of climate change on the levelised cost of wind energy," Renewable Energy, Elsevier, vol. 101(C), pages 575-592.
    5. Sharp, Ed & Dodds, Paul & Barrett, Mark & Spataru, Catalina, 2015. "Evaluating the accuracy of CFSR reanalysis hourly wind speed forecasts for the UK, using in situ measurements and geographical information," Renewable Energy, Elsevier, vol. 77(C), pages 527-538.
    6. Cradden, Lucy C. & McDermott, Frank & Zubiate, Laura & Sweeney, Conor & O'Malley, Mark, 2017. "A 34-year simulation of wind generation potential for Ireland and the impact of large-scale atmospheric pressure patterns," Renewable Energy, Elsevier, vol. 106(C), pages 165-176.
    7. Drew, Daniel R. & Barlow, Janet F. & Coker, Phil J., 2018. "Identifying and characterising large ramps in power output of offshore wind farms," Renewable Energy, Elsevier, vol. 127(C), pages 195-203.
    8. Madeleine McPherson & Theofilos Sotiropoulos-Michalakakos & LD Danny Harvey & Bryan Karney, 2017. "An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset," Energies, MDPI, vol. 10(7), pages 1-14, July.
    9. Jean-Luc Gaffard & Mauro Napoletano, 2012. "Agent-based models and economic policy," Post-Print hal-03461120, HAL.
    10. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    11. Rubin, Ofir D. & Babcock, Bruce A., 2013. "The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets," Energy, Elsevier, vol. 59(C), pages 676-688.
    12. Aldersey-Williams, John & Broadbent, Ian D. & Strachan, Peter A., 2020. "Analysis of United Kingdom offshore wind farm performance using public data: Improving the evidence base for policymaking," Utilities Policy, Elsevier, vol. 62(C).
    13. Gualtieri, Giovanni & Secci, Sauro, 2014. "Extrapolating wind speed time series vs. Weibull distribution to assess wind resource to the turbine hub height: A case study on coastal location in Southern Italy," Renewable Energy, Elsevier, vol. 62(C), pages 164-176.
    14. Burnett, Dougal & Barbour, Edward & Harrison, Gareth P., 2014. "The UK solar energy resource and the impact of climate change," Renewable Energy, Elsevier, vol. 71(C), pages 333-343.
    15. Elliston, Ben & Riesz, Jenny & MacGill, Iain, 2016. "What cost for more renewables? The incremental cost of renewable generation – An Australian National Electricity Market case study," Renewable Energy, Elsevier, vol. 95(C), pages 127-139.
    16. Rakib, M.I. & Evans, S.P. & Clausen, P.D., 2020. "Measured gust events in the urban environment, a comparison with the IEC standard," Renewable Energy, Elsevier, vol. 146(C), pages 1134-1142.
    17. Green, Richard & Vasilakos, Nicholas, 2010. "Market behaviour with large amounts of intermittent generation," Energy Policy, Elsevier, vol. 38(7), pages 3211-3220, July.
    18. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    19. Mirlatifi, A.M. & Egelioglu, F. & Atikol, U., 2015. "An econometric model for annual peak demand for small utilities," Energy, Elsevier, vol. 89(C), pages 35-44.
    20. Italo Fernandes & Felipe M. Pimenta & Osvaldo R. Saavedra & Arcilan T. Assireu, 2022. "Exploring the Complementarity of Offshore Wind Sites to Reduce the Seasonal Variability of Generation," Energies, MDPI, vol. 15(19), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:3:y:2014:i:1:p:215-234:d:33504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.