IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v13y2024i11p149-d1505045.html
   My bibliography  Save this article

Seven Decades of Surface Temperature Changes in Central European Lakes: What Is Next?

Author

Listed:
  • Mariusz Ptak

    (Department of Hydrology and Water Management, Adam Mickiewicz University, Krygowskiego 10, 61-680 Poznań, Poland)

  • Teerachai Amnuaylojaroen

    (Atmospheric Pollution and Climate Research Unit, School of Energy and Environment, University of Phayao, Phayao 56000, Thailand)

  • Mariusz Sojka

    (Department of Land Improvement, Environmental Development and Spatial Management, Poznań University of Life Sciences, Piątkowska 94E, 60-649 Poznań, Poland)

Abstract

Lakes are vital components of the hydrosphere, holding both environmental and economic significance. In recent times, they have undergone transformations in one of their key characteristics—water temperature. Assessing the scale and pace of these changes depends on the length and accuracy of the available data. This study focuses on the two lakes in Poland (Białe Augustowskie and Studzieniczne) with the longest continuous water temperature records, ranging from 1954 to 2023. The results reveal a relatively stable thermal regime until the late 1980s (with changes that were statistically insignificant) and a significant shift over the past three decades, during which the water temperature increased at a rate of 0.5 °C per decade. Importantly, simulations indicate further warming of the water by the end of the 21st century. Depending on the chosen climate change scenario, the warming of both lakes is expected to continue, with the Shared Socioeconomic Pathways (SSP585) scenario projecting a steady increase of 0.5 °C per decade. Given the fundamental importance of water temperature in determining factors such as water quality, these future changes present a significant challenge for water management authorities in terms of maintaining and managing these ecosystems.

Suggested Citation

  • Mariusz Ptak & Teerachai Amnuaylojaroen & Mariusz Sojka, 2024. "Seven Decades of Surface Temperature Changes in Central European Lakes: What Is Next?," Resources, MDPI, vol. 13(11), pages 1-16, October.
  • Handle: RePEc:gam:jresou:v:13:y:2024:i:11:p:149-:d:1505045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/13/11/149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/13/11/149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastiano Piccolroaz & R. Iestyn Woolway & Christopher J. Merchant, 2020. "Correction to: Global reconstruction of twentieth century lake surface water temperature reveals different warming trends depending on the climatic zone," Climatic Change, Springer, vol. 160(3), pages 443-443, June.
    2. Komatsu, Eiji & Fukushima, Takehiko & Harasawa, Hideo, 2007. "A modeling approach to forecast the effect of long-term climate change on lake water quality," Ecological Modelling, Elsevier, vol. 209(2), pages 351-366.
    3. Sebastiano Piccolroaz & R. Iestyn Woolway & Christopher J. Merchant, 2020. "Global reconstruction of twentieth century lake surface water temperature reveals different warming trends depending on the climatic zone," Climatic Change, Springer, vol. 160(3), pages 427-442, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weijia Wang & Kun Shi & Xiwen Wang & Yunlin Zhang & Boqiang Qin & Yibo Zhang & R. Iestyn Woolway, 2024. "The impact of extreme heat on lake warming in China," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Jian Zhou & Peter R. Leavitt & Kevin C. Rose & Xiwen Wang & Yibo Zhang & Kun Shi & Boqiang Qin, 2023. "Controls of thermal response of temperate lakes to atmospheric warming," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Martin T. Dokulil & Elvira Eyto & Stephen C. Maberly & Linda May & Gesa A. Weyhenmeyer & R. Iestyn Woolway, 2021. "Increasing maximum lake surface temperature under climate change," Climatic Change, Springer, vol. 165(3), pages 1-17, April.
    4. Elhabashy, Ahmed & Li, Jing & Sokolova, Ekaterina, 2023. "Water quality modeling of a eutrophic drinking water source: Impact of future climate on Cyanobacterial blooms," Ecological Modelling, Elsevier, vol. 477(C).
    5. Murat Can, 2024. "Invasive-Weed-Optimization-Based Extreme Learning Machine for Prediction of Lake Water Level Using Major Atmospheric–Oceanic Climate Scenarios," Sustainability, MDPI, vol. 16(17), pages 1-13, September.
    6. Rui Xia & Yuan Zhang & Andrea Critto & Jieyun Wu & Juntao Fan & Zhirong Zheng & Yizhang Zhang, 2016. "The Potential Impacts of Climate Change Factors on Freshwater Eutrophication: Implications for Research and Countermeasures of Water Management in China," Sustainability, MDPI, vol. 8(3), pages 1-17, March.
    7. Dibike, Yonas & Marshall, Rebecca & de Rham, Laurent, 2024. "Climatic sensitivity of seasonal ice-cover, water temperature and biogeochemical cycling in Lake 239 of the Experimental Lakes Area (ELA), Ontario, Canada," Ecological Modelling, Elsevier, vol. 489(C).
    8. Ye Pan & Yuan Yuan & Ting Sun & Yuxin Wang & Yujing Xie & Zhengqiu Fan, 2020. "Are the Water Quality Improvement Measures of China’s South-to-North Water Diversion Project Effective? A Case Study of Xuzhou Section in the East Route," IJERPH, MDPI, vol. 17(17), pages 1-21, September.
    9. Vassilis Z. Antonopoulos & Soultana K. Gianniou, 2023. "Energy Budget, Water Quality Parameters and Primary Production Modeling in Lake Volvi in Northern Greece," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    10. Taner, Mehmet Ümit & Carleton, James N. & Wellman, Marjorie, 2011. "Integrated model projections of climate change impacts on a North American lake," Ecological Modelling, Elsevier, vol. 222(18), pages 3380-3393.
    11. Sarah Null & Joshua Viers & Michael Deas & Stacy Tanaka & Jeffrey Mount, 2013. "Stream temperature sensitivity to climate warming in California’s Sierra Nevada: impacts to coldwater habitat," Climatic Change, Springer, vol. 116(1), pages 149-170, January.
    12. Hye Lee & Eun Kim & Seok Park & Jung Choi, 2012. "Effects of climate change on the thermal structure of lakes in the Asian Monsoon Area," Climatic Change, Springer, vol. 112(3), pages 859-880, June.
    13. Boudreaux, Greg & Lupi, Frank & Sohngen, Brent & Xu, Alan, 2023. "Measuring beachgoer preferences for avoiding harmful algal blooms and bacterial warnings," Ecological Economics, Elsevier, vol. 204(PA).
    14. Bell, Andrew & Zhu, Tingju & Xie, Hua & Ringler, Claudia, 2014. "Climate–water interactions—Challenges for improved representation in integrated assessment models," Energy Economics, Elsevier, vol. 46(C), pages 510-521.
    15. Farrell, Kaitlin J. & Ward, Nicole K. & Krinos, Arianna I. & Hanson, Paul C. & Daneshmand, Vahid & Figueiredo, Renato J. & Carey, Cayelan C., 2020. "Ecosystem-scale nutrient cycling responses to increasing air temperatures vary with lake trophic state," Ecological Modelling, Elsevier, vol. 430(C).
    16. Animesh Debnath & Mrinmoy Majumder & Manish Pal, 2015. "A Cognitive Approach in Selection of Source for Water Treatment Plant based on Climatic Impact," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1907-1919, April.
    17. Martin Schmid & Stefan Hunziker & Alfred Wüest, 2014. "Lake surface temperatures in a changing climate: a global sensitivity analysis," Climatic Change, Springer, vol. 124(1), pages 301-315, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:13:y:2024:i:11:p:149-:d:1505045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.