IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v12y2023i8p86-d1203087.html
   My bibliography  Save this article

Methodology for the Formation of a Digital Model of the Life Cycle of an Offshore Oil and Gas Platform

Author

Listed:
  • Nikolay Didenko

    (Institute of Industrial Management, Economics and Trade, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia)

  • Djamilia Skripnuk

    (Institute of Industrial Management, Economics and Trade, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia)

  • Viktor Merkulov

    (Institute of Industrial Management, Economics and Trade, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia)

  • Kseniia N. Kikkas

    (Institute of Industrial Management, Economics and Trade, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia)

  • Konstantin Skripniuk

    (Institute of Advanced Manufacturing Technologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia)

Abstract

This article systematizes scientific views on the problems associated with the conditions and patterns of creating a digital model of a sophisticated engineering and technical complex. The main elements of a digital model of the life cycle of an offshore oil and gas platform are considered. An interdisciplinary approach to the study of the essence of the subject space of the life cycle of an offshore oil and gas platform is substantiated on the basis of modeling the subject space of the life cycle of an offshore oil and gas platform using alternative graphs and information technologies. New concepts have been introduced into scientific circulation that reveal the essence of a digital model of the life cycle of an offshore oil and gas platform: life cycle cost, life cycle duration, and the scientific and technical level of the offshore oil and gas platform. The main provisions of the concept of the virtual life cycle of an offshore oil and gas platform are considered. Based on modeling the subject area of the life cycle of an offshore oil and gas platform by alternative graphs, is shown the relationship between the stages of the life cycle. The technology of model-based design of the virtual life cycle of an offshore oil and gas platform is proposed. The developed model of the life cycle of an offshore oil and gas platform based on the display of the life cycle by alternative graphs makes it possible to choose solutions for each stage based on criteria common to the life cycle of an offshore oil and gas platform. A cyclic procedure for managing a virtual life cycle model of an offshore oil and gas platform has been developed. The digital model of the life cycle of an offshore oil and gas platform is constantly updated following the change in physical prototypes, which increases the accuracy of decisions based on it. The application of the model in practice will significantly reduce the number of full-scale tests of everything related to the manufacture of the real material part of a platform.

Suggested Citation

  • Nikolay Didenko & Djamilia Skripnuk & Viktor Merkulov & Kseniia N. Kikkas & Konstantin Skripniuk, 2023. "Methodology for the Formation of a Digital Model of the Life Cycle of an Offshore Oil and Gas Platform," Resources, MDPI, vol. 12(8), pages 1-21, July.
  • Handle: RePEc:gam:jresou:v:12:y:2023:i:8:p:86-:d:1203087
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/12/8/86/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/12/8/86/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marat M. Khayrutdinov & Vladimir I. Golik & Alexander V. Aleksakhin & Ekaterina V. Trushina & Natalia V. Lazareva & Yulia V. Aleksakhina, 2022. "Proposal of an Algorithm for Choice of a Development System for Operational and Environmental Safety in Mining," Resources, MDPI, vol. 11(10), pages 1-16, September.
    2. Nikolay I. Didenko & Yuri S. Klochkov & Djamilia F. Skripnuk, 2018. "Ecological Criteria for Comparing Linear and Circular Economies," Resources, MDPI, vol. 7(3), pages 1-17, August.
    3. Osmundsen, Petter & Tveteras, Ragnar, 2003. "Decommissioning of petroleum installations--major policy issues," Energy Policy, Elsevier, vol. 31(15), pages 1579-1588, December.
    4. Marzena Smol & Renata Koneczna, 2021. "Economic Indicators in Water and Wastewater Sector Contributing to a Circular Economy (CE)," Resources, MDPI, vol. 10(12), pages 1-13, December.
    5. Niall Bell & Jan Smith, 1999. "Coral growing on North Sea oil rigs," Nature, Nature, vol. 402(6762), pages 601-601, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adkins, Roger & Paxson, Dean, 2019. "Rescaling-contraction with a lower cost technology when revenue declines," European Journal of Operational Research, Elsevier, vol. 277(2), pages 574-586.
    2. Nan Li & Beibei Shi & Rong Kang, 2023. "Analysis of the Coupling Effect and Space-Time Difference between China’s Digital Economy Development and Carbon Emissions Reduction," IJERPH, MDPI, vol. 20(1), pages 1-25, January.
    3. Elena N. Shaforostova & Olga V. Kosareva-Volod’ko & Olga V. Belyankina & Danila Y. Solovykh & Ekaterina S. Sazankova & Elena I. Sizova & Danila A. Adigamov, 2023. "A Tailing Dump as Industrial Deposit; Study of the Mineralogical Composition of Tailing Dump of the Southern Urals and the Possibility of Tailings Re-Development," Resources, MDPI, vol. 12(2), pages 1-13, February.
    4. Andrea Szilagyi & Lucian-Ionel Cioca & Laura Bacali & Elena-Simina Lakatos & Andreea-Loredana Birgovan, 2022. "Consumers in the Circular Economy: A Path Analysis of the Underlying Factors of Purchasing Behaviour," IJERPH, MDPI, vol. 19(18), pages 1-12, September.
    5. Ya Tian & Lixiao Tu & Xiang Lu & Wei Zhou & Izhar Mithal Jiskani & Fuming Liu & Qingxiang Cai, 2023. "Stability Analysis of Multi-Layer Highwall Mining: A Sustainable Approach for Thick-Seam Open-Pit Mines," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    6. Fabiana Liar Agudo & Barbara Stolte Bezerra & José Alcides Gobbo & Luis Alberto Bertolucci Paes, 2022. "Unfolding research themes for industrial symbiosis and underlying theories," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1682-1702, December.
    7. Pavel Konyukhovskiy & Victoria Holodkova & Aleksander Titov, 2019. "Modeling Competition between Countries in the Development of Arctic Resources," Resources, MDPI, vol. 8(1), pages 1-17, March.
    8. Oleksandr Kuzmenko & Roman Dychkovskyi & Mykhailo Petlovanyi & Valentyn Buketov & Natalia Howaniec & Adam Smolinski, 2023. "Mechanism of Interaction of Backfill Mixtures with Natural Rock Fractures within the Zone of Their Intense Manifestation while Developing Steep Ore Deposits," Sustainability, MDPI, vol. 15(6), pages 1-12, March.
    9. Anastasia O. Ljovkina & David L. Dusseault & Olga V. Zaharova & Yury Klochkov, 2019. "Managing Innovation Resources in Accordance with Sustainable Development Ethics: Typological Analysis," Resources, MDPI, vol. 8(2), pages 1-17, April.
    10. Cheynesh B. Kongar-Syuryun & Alexander V. Aleksakhin & Evgeniya N. Eliseeva & Anna V. Zhaglovskaya & Roman V. Klyuev & Denis A. Petrusevich, 2023. "Modern Technologies Providing a Full Cycle of Geo-Resources Development," Resources, MDPI, vol. 12(4), pages 1-14, April.
    11. Pavel Poletskov & Marina Gushchina & Marina Polyakova & Daniil Alekseev & Olga Nikitenko & Dmitrii Chukin & Yuri Vasil’ev, 2019. "Development of Alloyed Pipe Steel Composition for Oil and Gas Production in the Arctic Region," Resources, MDPI, vol. 8(2), pages 1-11, April.
    12. Parente, Virginia & Ferreira, Doneivan & Moutinho dos Santos, Edmilson & Luczynski, Estanislau, 2006. "Offshore decommissioning issues: Deductibility and transferability," Energy Policy, Elsevier, vol. 34(15), pages 1992-2001, October.
    13. Todd Bond & Julian C Partridge & Michael D Taylor & Tim F Cooper & Dianne L McLean, 2018. "The influence of depth and a subsea pipeline on fish assemblages and commercially fished species," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-33, November.
    14. Marcos L. S. Oliveira & Gabriela Oliveira Valença & Diana Pinto & Leila Dal Moro & Brian William Bodah & Giana de Vargas Mores & Julian Grub & Bashir Adelodun & Alcindo Neckel, 2023. "Hazardous Elements in Sediments Detected in Former Decommissioned Coal Mining Areas in Colombia: A Need for Environmental Recovery," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    15. Vincenzo Basile & Roberto Vona, 2023. "Sustainable and Circular Business Model for Oil & Gas Offshore Platform Decommissioning," International Journal of Business and Management, Canadian Center of Science and Education, vol. 16(10), pages 1-1, February.
    16. Iuliia Plastinina & Lyudmila Teslyuk & Nataliya Dukmasova & Elena Pikalova, 2019. "Implementation of Circular Economy Principles in Regional Solid Municipal Waste Management: The Case of Sverdlovskaya Oblast (Russian Federation)," Resources, MDPI, vol. 8(2), pages 1-18, May.
    17. Huyen Thi Le & Janet Xuanli Liao & Christopher J. Spray, 2021. "Decommissioning Planning of Offshore Oil and Gas Fields in Vietnam: What Can be Learnt from Mine Closure Planning in Scotland?," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 162-174.
    18. Ming Lan & Rong Yang & Yan He & Qian Kang, 2023. "Study on the Dynamic Stability of an Underground Engineering Rock Mass with a Fault-Slip Seismic Source: Case Study of a URL Exploration Tunnel," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    19. Yuesong Tang & Zhaohui Wang & Wenchao Sun & Wei Wang & Haixiao Yang, 2023. "Research Development and Critical Problems Existing in Strata Movement and Its Control," Energies, MDPI, vol. 16(16), pages 1-21, August.
    20. Petter Osmundsen & Ragnar Tveterås, 2000. "Disposal of Petroleum Installations - Major Policy Issues," CESifo Working Paper Series 280, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:12:y:2023:i:8:p:86-:d:1203087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.