IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v11y2022i8p72-d878096.html
   My bibliography  Save this article

A Database for the Stocks and Flows of Sand and Gravel

Author

Listed:
  • John D. Morley

    (Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK)

  • Rupert J. Myers

    (Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK)

  • Yves Plancherel

    (Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK)

  • Pablo R. Brito-Parada

    (Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK)

Abstract

Increasing demand for sand and gravel globally is leading to social, environmental, and political issues that are becoming more widely recognised. Lack of data and poor accessibility of the few available data contribute to exacerbating these issues and impair evidence-based management efforts. This paper presents a database to store stocks and flows data for sand and gravel from different sources. The classification system underlying within it builds on the Universal Materials Information System (UMIS) nomenclature, which is used to construct hierarchical order in the data and in the same manner as the Yale Stocks and Flow Database (YSTAFDB), a common data format. To illustrate how the database is built and used, a case study using UK data is presented. The UK is chosen owing to relatively better access to data compared to other locations. Quantitative analyses of the data show the supply chain of these materials to be currently stable for the UK as indigenous extraction contributes 95.6% to UK sand and gravel production, with imports accounting for the rest of the inputs, of which 50% is reliant on only one nation.

Suggested Citation

  • John D. Morley & Rupert J. Myers & Yves Plancherel & Pablo R. Brito-Parada, 2022. "A Database for the Stocks and Flows of Sand and Gravel," Resources, MDPI, vol. 11(8), pages 1-17, August.
  • Handle: RePEc:gam:jresou:v:11:y:2022:i:8:p:72-:d:878096
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/11/8/72/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/11/8/72/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paulina Schiappacasse & Bernhard Müller & Le Thuy Linh, 2019. "Towards Responsible Aggregate Mining in Vietnam," Resources, MDPI, vol. 8(3), pages 1-15, August.
    2. Walter R. Stahel, 2016. "The circular economy," Nature, Nature, vol. 531(7595), pages 435-438, March.
    3. Abdulrazak O. Balogun & Todd D. Smith, 2020. "Musculoskeletal Symptoms among Stone, Sand and Gravel Mine Workers and Associations with Sociodemographic and Job-Related Factors," IJERPH, MDPI, vol. 17(10), pages 1-10, May.
    4. Richard C. Lupton & Julian M. Allwood, 2018. "Incremental Material Flow Analysis with Bayesian Inference," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1352-1364, December.
    5. Dimitra Ioannidou & Guido Sonnemann & Sangwon Suh, 2020. "Do we have enough natural sand for low‐carbon infrastructure?," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1004-1015, October.
    6. Rupert J. Myers & Tomer Fishman & Barbara K. Reck & T. E. Graedel, 2019. "Unified Materials Information System (UMIS): An Integrated Material Stocks and Flows Data Structure," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 222-240, February.
    7. Harald U. Sverdrup & Deniz Koca & Peter Schlyter, 2017. "A Simple System Dynamics Model for the Global Production Rate of Sand, Gravel, Crushed Rock and Stone, Market Prices and Long-Term Supply Embedded into the WORLD6 Model," Biophysical Economics and Resource Quality, Springer, vol. 2(2), pages 1-20, June.
    8. Marius Dan Gavriletea, 2017. "Environmental Impacts of Sand Exploitation. Analysis of Sand Market," Sustainability, MDPI, vol. 9(7), pages 1-26, June.
    9. Walter Leal Filho & Julian Hunt & Alexandros Lingos & Johannes Platje & Lara Werncke Vieira & Markus Will & Marius Dan Gavriletea, 2021. "The Unsustainable Use of Sand: Reporting on a Global Problem," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    10. Antoine Boubault & Nadia Maïzi, 2019. "Devising Mineral Resource Supply Pathways to a Low-Carbon Electricity Generation by 2100," Resources, MDPI, vol. 8(1), pages 1-13, February.
    11. Heinz Schandl & Marina Fischer‐Kowalski & James West & Stefan Giljum & Monika Dittrich & Nina Eisenmenger & Arne Geschke & Mirko Lieber & Hanspeter Wieland & Anke Schaffartzik & Fridolin Krausmann & S, 2018. "Global Material Flows and Resource Productivity: Forty Years of Evidence," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 827-838, August.
    12. Bide, Tom & Balson, Peter & Mankelow, Joseph & Selby, Ian, 2016. "A new sand and gravel map for the UK Continental Shelf to support sustainable planning," Resources Policy, Elsevier, vol. 48(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John D. Morley & Rupert J. Myers & Yves Plancherel & Pablo R. Brito-Parada, 2022. "RETRACTED: A Database for the Extraction, Trade, and Use of Sand and Gravel," Resources, MDPI, vol. 11(4), pages 1-16, April.
    2. Dimitra Ioannidou & Guido Sonnemann & Sangwon Suh, 2020. "Do we have enough natural sand for low‐carbon infrastructure?," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1004-1015, October.
    3. Rajiv Sinha & Kanchan Mishra & Priyesh Salunke & Vidya Sounderajan, 2023. "Sustainable Silt Management in the Lower Kosi River, North Bihar, India: Demand Assessment, Investment Model and Socio-Economic Development," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    4. Naiara Uriarte-Gallastegi & Beñat Landeta-Manzano & German Arana-Landín & Iker Laskurain-Iturbe, 2022. "How Do Technologies Based on Cyber–Physical Systems Affect the Environmental Performance of Products? A Comparative Study of Manufacturers’ and Customers’ Perspectives," Sustainability, MDPI, vol. 14(20), pages 1-26, October.
    5. Watari, Takuma & Yokoi, Ryosuke, 2021. "International inequality in in-use metal stocks: What it portends for the future," Resources Policy, Elsevier, vol. 70(C).
    6. Leticia Regueiro & Richard Newton & Mohamed Soula & Diego Méndez & Björn Kok & David C. Little & Roberto Pastres & Johan Johansen & Martiña Ferreira, 2022. "Opportunities and limitations for the introduction of circular economy principles in EU aquaculture based on the regulatory framework," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2033-2044, December.
    7. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    8. Sam Hampton & Richard Blundel & Aqueel Wahga & Tina Fawcett & Christopher Shaw, 2022. "Transforming small and medium‐sized enterprises to address the climate emergency: The case for values‐based engagement," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(5), pages 1424-1439, September.
    9. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    10. Jean-Baptiste Bahers & Paula Higuera & Anne Ventura & Nicolas Antheaume, 2020. "The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    11. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    12. Ragnheiður Bogadóttir, 2020. "The Social Metabolism of Quiet Sustainability in the Faroe Islands," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    13. Guo, Xiuping & Meng, Xianglei & Luan, Qingfeng & Wang, Yanhua, 2023. "Trade openness, globalization, and natural resources management: The moderating role of economic complexity in newly industrialized countries," Resources Policy, Elsevier, vol. 85(PA).
    14. Michael Saidani & Alissa Kendall & Bernard Yannou & Yann Leroy & François Cluzel, 2019. "Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators," Post-Print hal-02094798, HAL.
    15. Kirchherr, Julian & Piscicelli, Laura & Bour, Ruben & Kostense-Smit, Erica & Muller, Jennifer & Huibrechtse-Truijens, Anne & Hekkert, Marko, 2018. "Barriers to the Circular Economy: Evidence From the European Union (EU)," Ecological Economics, Elsevier, vol. 150(C), pages 264-272.
    16. Md Golam Rabbani & Professor Pradip Kumar Panday, 2022. "Sand Extraction and Its Impact on the Livelihood of Rural People of Bangladesh: Evidence from Brahmaputra River," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 6(5), pages 801-807, May.
    17. Germán López Pérez & Isabel María García Sánchez & José Luis Zafra Gómez, 2024. "A systematic literature review and bibliometric analysis of eco‐innovation on financial performance: Identifying barriers and drivers," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 1321-1340, February.
    18. Graziela Darla Araujo Galvão & Steve Evans & Paulo Sergio Scoleze Ferrer & Marly Monteiro de Carvalho, 2022. "Circular business model: Breaking down barriers towards sustainable development," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1504-1524, May.
    19. Brinkley, Catherine & Raj, Subhashni, 2022. "Perfusion and urban thickness: The shape of cities," Land Use Policy, Elsevier, vol. 115(C).
    20. Dimitrios Vlachopoulos & Rannveig Björk Thorkelsdóttir & Despoina Schina & Jóna Guðrún Jónsdóttir, 2023. "Teachers’ Experience and Perceptions of Sustainable Digitalization in School Education: An Existential Phenomenological Study of Teachers in Romania, Greece, Cyprus, Iceland, and The Netherlands," Sustainability, MDPI, vol. 15(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:11:y:2022:i:8:p:72-:d:878096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.