IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i9p949-d542244.html
   My bibliography  Save this article

Gain-Preserving Data-Driven Approximation of the Koopman Operator and Its Application in Robust Controller Design

Author

Listed:
  • Keita Hara

    (Department of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan)

  • Masaki Inoue

    (Department of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan)

Abstract

In this paper, we address the data-driven modeling of a nonlinear dynamical system while incorporating a priori information. The nonlinear system is described using the Koopman operator, which is a linear operator defined on a lifted infinite-dimensional state-space. Assuming that the L 2 gain of the system is known, the data-driven finite-dimensional approximation of the operator while preserving information about the gain, namely L 2 gain-preserving data-driven modeling, is formulated. Then, its computationally efficient solution method is presented. An application of the modeling method to feedback controller design is also presented. Aiming for robust stabilization using data-driven control under a poor training dataset, we address the following two modeling problems: (1) Forward modeling: the data-driven modeling is applied to the operating data of a plant system to derive the plant model; (2) Backward modeling: L 2 gain-preserving data-driven modeling is applied to the same data to derive an inverse model of the plant system. Then, a feedback controller composed of the plant and inverse models is created based on internal model control, and it robustly stabilizes the plant system. A design demonstration of the data-driven controller is provided using a numerical experiment.

Suggested Citation

  • Keita Hara & Masaki Inoue, 2021. "Gain-Preserving Data-Driven Approximation of the Koopman Operator and Its Application in Robust Controller Design," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:949-:d:542244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/9/949/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/9/949/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steven L Brunton & Bingni W Brunton & Joshua L Proctor & J Nathan Kutz, 2016. "Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhong & Chen, Xiaofang & Liu, Jinping & Cen, Lihui & Gui, Weihua, 2024. "Learning model predictive control of nonlinear systems with time-varying parameters using Koopman operator," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    2. Nassir Cassamo & Jan-Willem van Wingerden, 2020. "On the Potential of Reduced Order Models for Wind Farm Control: A Koopman Dynamic Mode Decomposition Approach," Energies, MDPI, vol. 13(24), pages 1-21, December.
    3. Oster, Matthew R. & King, Ethan & Bakker, Craig & Bhattacharya, Arnab & Chatterjee, Samrat & Pan, Feng, 2023. "Multi-level optimization with the koopman operator for data-driven, domain-aware, and dynamic system security," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Riccardo Colantuono & Riccardo Colantuono & Massimiliano Mazzanti & Michele Pinelli, 2023. "Aviation and the EU ETS: an overview and a data-driven approach for carbon price prediction," SEEDS Working Papers 0123, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Feb 2023.
    5. Jamiree Harrison & Enoch Yeung, 2021. "Stability Analysis of Parameter Varying Genetic Toggle Switches Using Koopman Operators," Mathematics, MDPI, vol. 9(23), pages 1-25, December.
    6. Camilo Garcia-Tenorio & Alain Vande Wouwer, 2022. "A Matlab Toolbox for Extended Dynamic Mode Decomposition Based on Orthogonal Polynomials and p-q Quasi-Norm Order Reduction," Mathematics, MDPI, vol. 10(20), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:949-:d:542244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.