IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i9p1062-d551073.html
   My bibliography  Save this article

Approximation-Based Quantized State Feedback Tracking of Uncertain Input-Saturated MIMO Nonlinear Systems with Application to 2-DOF Helicopter

Author

Listed:
  • Byung Mo Kim

    (School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Korea)

  • Sung Jin Yoo

    (School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Korea)

Abstract

This paper addresses an approximation-based quantized state feedback tracking problem of multiple-input multiple-output (MIMO) nonlinear systems with quantized input saturation. A uniform quantizer is adopted to quantize state variables and control inputs of MIMO nonlinear systems. The primary features in the current development are that (i) an adaptive neural network tracker using quantized states is developed for MIMO nonlinear systems and (ii) a compensation mechanism of quantized input saturation is designed by constructing an auxiliary system. An adaptive neural tracker design with the compensation of quantized input saturation is developed by deriving an augmented error surface using quantized states. It is shown that closed-loop stability analysis and tracking error convergence are conducted based on Lyapunov theory. Finally, we give simulation and experimental results of the 2-degrees-of-freedom (2-DOF) helicopter system for verifying to the validity of the proposed methodology where the tracking performance of pitch and yaw angles is measured with the mean squared errors of 0.1044 and 0.0435 for simulation results, and those of 0.0656 and 0.0523 for experimental results.

Suggested Citation

  • Byung Mo Kim & Sung Jin Yoo, 2021. "Approximation-Based Quantized State Feedback Tracking of Uncertain Input-Saturated MIMO Nonlinear Systems with Application to 2-DOF Helicopter," Mathematics, MDPI, vol. 9(9), pages 1-16, May.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:1062-:d:551073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/9/1062/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/9/1062/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li-Juan Liu & Jing Zhou & Changyun Wen & Xudong Zhao, 2017. "Robust adaptive tracking control of uncertain systems with time-varying input delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(16), pages 3440-3449, December.
    2. Yekai Yang & Zhaoxu Yu & Shugang Li, 2018. "Adaptive output feedback quantised tracking control for stochastic nonstrict-feedback nonlinear systems with input saturation," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(15), pages 3130-3145, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juntao Fei & Zhilin Feng, 2019. "Adaptive Fuzzy Super-Twisting Sliding Mode Control for Microgyroscope," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    2. Pishro, Aboozar & Shahrokhi, Mohammad & Mohit, Mohammaderfan, 2023. "Adaptive neural quantized control for fractional-order full-state constrained non-strict feedback systems subject to input fault and nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Guofa Sun & Yaming Xu, 2019. "Finite-Time Observer-Based Adaptive Control of Switched System with Unknown Backlash-Like Hysteresis," Complexity, Hindawi, vol. 2019, pages 1-14, October.
    4. Mei, Keqi & Ma, Li & He, Runxin & Ding, Shihong, 2020. "Finite-time controller design of multiple integrator nonlinear systems with input saturation," Applied Mathematics and Computation, Elsevier, vol. 372(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:1062-:d:551073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.