IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i8p885-d537491.html
   My bibliography  Save this article

Robust Solutions for Uncertain Continuous-Time Linear Programming Problems with Time-Dependent Matrices

Author

Listed:
  • Hsien-Chung Wu

    (Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 802, Taiwan)

Abstract

The uncertainty for the continuous-time linear programming problem with time-dependent matrices is considered in this paper. In this case, the robust counterpart of the continuous-time linear programming problem is introduced. In order to solve the robust counterpart, it will be transformed into the conventional form of the continuous-time linear programming problem with time-dependent matrices. The discretization problem is formulated for the sake of numerically calculating the ϵ -optimal solutions, and a computational procedure is also designed to achieve this purpose.

Suggested Citation

  • Hsien-Chung Wu, 2021. "Robust Solutions for Uncertain Continuous-Time Linear Programming Problems with Time-Dependent Matrices," Mathematics, MDPI, vol. 9(8), pages 1-52, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:8:p:885-:d:537491
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/8/885/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/8/885/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Ching-Feng Wen & Hsien-Chung Wu, 2011. "Using the Dinkelbach-type algorithm to solve the continuous-time linear fractional programming problems," Journal of Global Optimization, Springer, vol. 49(2), pages 237-263, February.
    3. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    4. Xin Chen & Melvyn Sim & Peng Sun, 2007. "A Robust Optimization Perspective on Stochastic Programming," Operations Research, INFORMS, vol. 55(6), pages 1058-1071, December.
    5. S. Nobakhtian & M. R. Pouryayevali, 2008. "Duality for Nonsmooth Continuous-Time Problems of Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 77-85, January.
    6. Ching-Feng Wen & Hsien-Chung Wu, 2012. "Using the parametric approach to solve the continuous-time linear fractional max–min problems," Journal of Global Optimization, Springer, vol. 54(1), pages 129-153, September.
    7. Y. Zhang, 2007. "General Robust-Optimization Formulation for Nonlinear Programming," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 111-124, January.
    8. Lisa Fleischer & Jay Sethuraman, 2005. "Efficient Algorithms for Separated Continuous Linear Programs: The Multicommodity Flow Problem with Holding Costs and Extensions," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 916-938, November.
    9. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    10. S. Nobakhtian & M. R. Pouryayevali, 2008. "Optimality Criteria for Nonsmooth Continuous-Time Problems of Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 69-76, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsien-Chung Wu, 2019. "Numerical Method for Solving the Robust Continuous-Time Linear Programming Problems," Mathematics, MDPI, vol. 7(5), pages 1-50, May.
    2. Han, Biao & Shang, Chao & Huang, Dexian, 2021. "Multiple kernel learning-aided robust optimization: Learning algorithm, computational tractability, and usage in multi-stage decision-making," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1004-1018.
    3. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    4. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    5. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    6. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    7. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    8. Li, Ping & Han, Yingwei & Xia, Yong, 2016. "Portfolio optimization using asymmetry robust mean absolute deviation model," Finance Research Letters, Elsevier, vol. 18(C), pages 353-362.
    9. Pengyu Qian & Zizhuo Wang & Zaiwen Wen, 2015. "A Composite Risk Measure Framework for Decision Making under Uncertainty," Papers 1501.01126, arXiv.org.
    10. Fanwen Meng & Jin Qi & Meilin Zhang & James Ang & Singfat Chu & Melvyn Sim, 2015. "A Robust Optimization Model for Managing Elective Admission in a Public Hospital," Operations Research, INFORMS, vol. 63(6), pages 1452-1467, December.
    11. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    12. Wenqing Chen & Melvyn Sim, 2009. "Goal-Driven Optimization," Operations Research, INFORMS, vol. 57(2), pages 342-357, April.
    13. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    14. Gülpinar, Nalan & Pachamanova, Dessislava, 2013. "A robust optimization approach to asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2031-2041.
    15. Soleimanian, Azam & Salmani Jajaei, Ghasemali, 2013. "Robust nonlinear optimization with conic representable uncertainty set," European Journal of Operational Research, Elsevier, vol. 228(2), pages 337-344.
    16. Dimitris Bertsimas & Vineet Goyal, 2013. "On the approximability of adjustable robust convex optimization under uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 323-343, June.
    17. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    18. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    19. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2008. "Incorporating Asymmetric Distributional Information in Robust Value-at-Risk Optimization," Management Science, INFORMS, vol. 54(3), pages 573-585, March.
    20. Shaghayegh Mokarami & S. Hashemi, 2015. "Constrained shortest path with uncertain transit times," Journal of Global Optimization, Springer, vol. 63(1), pages 149-163, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:8:p:885-:d:537491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.