IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i5p551-d511388.html
   My bibliography  Save this article

Improving the Accuracy of Dam Inflow Predictions Using a Long Short-Term Memory Network Coupled with Wavelet Transform and Predictor Selection

Author

Listed:
  • Trung Duc Tran

    (School of Civil and Environmental Engineering, University of Ulsan, Ulsan 44610, Korea)

  • Vinh Ngoc Tran

    (School of Civil and Environmental Engineering, University of Ulsan, Ulsan 44610, Korea)

  • Jongho Kim

    (School of Civil and Environmental Engineering, University of Ulsan, Ulsan 44610, Korea)

Abstract

Accurate and reliable dam inflow prediction models are essential for effective reservoir operation and management. This study presents a data-driven model that couples a long short-term memory (LSTM) network with robust input predictor selection, input reconstruction by wavelet transformation, and efficient hyper-parameter optimization by K-fold cross-validation and the random search. First, a robust analysis using a “correlation threshold” for partial autocorrelation and cross-correlation functions is proposed, and only variables greater than this threshold are selected as input predictors and their time lags. This analysis indicates that a model trained on a threshold of 0.4 returns the highest Nash–Sutcliffe efficiency value; as a result, six principal inputs are selected. Second, using additional subseries reconstructed by the wavelet transform improves predictability, particularly for flow peak. The peak error values of LSTM with the transform are approximately one-half to one-quarter the size of those without the transform. Third, for a K of 5 as determined by the Silhouette coefficients and the distortion score, the wavelet-transformed LSTMs require a larger number of hidden units, epochs, dropout, and batch size. This complex configuration is needed because the amount of inputs used by these LSTMs is five times greater than that of other models. Last, an evaluation of accuracy performance reveals that the model proposed in this study, called SWLSTM, provides superior predictions of the daily inflow of the Hwacheon dam in South Korea compared with three other LSTM models by 84%, 78%, and 65%. These results strengthen the potential of data-driven models for efficient and effective reservoir inflow predictions, and should help policy-makers and operators better manage their reservoir operations.

Suggested Citation

  • Trung Duc Tran & Vinh Ngoc Tran & Jongho Kim, 2021. "Improving the Accuracy of Dam Inflow Predictions Using a Long Short-Term Memory Network Coupled with Wavelet Transform and Predictor Selection," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:551-:d:511388
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/5/551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/5/551/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Venkata Ramana & B. Krishna & S. Kumar & N. Pandey, 2013. "Monthly Rainfall Prediction Using Wavelet Neural Network Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3697-3711, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinping Zhang & Yong Zhao & Weihua Xiao, 2015. "Multi-Resolution Cointegration Prediction for Runoff and Sediment Load," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3601-3613, August.
    2. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    3. Mohamed Shenify & Amir Danesh & Milan Gocić & Ros Taher & Ainuddin Abdul Wahab & Abdullah Gani & Shahaboddin Shamshirband & Dalibor Petković, 2016. "Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 641-652, January.
    4. Saeid Mehdizadeh & Javad Behmanesh & Keivan Khalili, 2018. "New Approaches for Estimation of Monthly Rainfall Based on GEP-ARCH and ANN-ARCH Hybrid Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 527-545, January.
    5. Mostafa Dastorani & Mohammad Mirzavand & Mohammad Taghi Dastorani & Seyyed Javad Sadatinejad, 2016. "Comparative study among different time series models applied to monthly rainfall forecasting in semi-arid climate condition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1811-1827, April.
    6. Pornpit Wongthongtham & Bilal Abu-Salih & Jeff Huang & Hemixa Patel & Komsun Siripun, 2023. "A Multi-Criteria Analysis Approach to Identify Flood Risk Asset Damage Hotspots in Western Australia," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    7. Aman Mohammad Kalteh, 2019. "Modular Wavelet–Extreme Learning Machine: a New Approach for Forecasting Daily Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3831-3849, September.
    8. Lamine Diop & Saeed Samadianfard & Ansoumana Bodian & Zaher Mundher Yaseen & Mohammad Ali Ghorbani & Hana Salimi, 2020. "Annual Rainfall Forecasting Using Hybrid Artificial Intelligence Model: Integration of Multilayer Perceptron with Whale Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 733-746, January.
    9. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    10. Johanna Engström & Peyman Abbaszadeh & David Keellings & Proloy Deb & Hamid Moradkhani, 2022. "Wildfires in the Arctic and tropical biomes: what is the relative role of climate?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1901-1914, November.
    11. Masoud Karbasi, 2018. "Forecasting of Multi-Step Ahead Reference Evapotranspiration Using Wavelet- Gaussian Process Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1035-1052, February.
    12. Rajeev Sahay & Ayush Srivastava, 2014. "Predicting Monsoon Floods in Rivers Embedding Wavelet Transform, Genetic Algorithm and Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 301-317, January.
    13. Mahrouz Nourali, 2023. "Improved Treatment of Model Prediction Uncertainty: Estimating Rainfall using Discrete Wavelet Transform and Principal Component Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4211-4231, September.
    14. Zaher Mundher Yaseen & Mazen Ismaeel Ghareb & Isa Ebtehaj & Hossein Bonakdari & Ridwan Siddique & Salim Heddam & Ali A. Yusif & Ravinesh Deo, 2018. "Rainfall Pattern Forecasting Using Novel Hybrid Intelligent Model Based ANFIS-FFA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 105-122, January.
    15. Guo-Yu Huang & Chi-Ju Lai & Ping-Feng Pai, 2022. "Forecasting Hourly Intermittent Rainfall by Deep Belief Networks with Simple Exponential Smoothing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5207-5223, October.
    16. Alireza Farrokhi & Saeed Farzin & Sayed-Farhad Mousavi, 2020. "A New Framework for Evaluation of Rainfall Temporal Variability through Principal Component Analysis, Hybrid Adaptive Neuro-Fuzzy Inference System, and Innovative Trend Analysis Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3363-3385, August.
    17. Yan-Fang Sang & Zhonggen Wang & Changming Liu, 2015. "Wavelet Neural Modeling for Hydrologic Time Series Forecasting with Uncertainty Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1789-1801, April.
    18. Gaurav Singh & A. R. S. Kumar & R. K. Jaiswal & Surjeet Singh & R. M. Singh, 2022. "Model coupling approach for daily runoff simulation in Hamp Pandariya catchment of Chhattisgarh state in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 12311-12339, October.
    19. Chuan Li & Yun Bai & Bo Zeng, 2016. "Deep Feature Learning Architectures for Daily Reservoir Inflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5145-5161, November.
    20. Fatemeh Barzegari Banadkooki & Mohammad Ehteram & Ali Najah Ahmed & Chow Ming Fai & Haitham Abdulmohsin Afan & Wani M. Ridwam & Ahmed Sefelnasr & Ahmed El-Shafie, 2019. "Precipitation Forecasting Using Multilayer Neural Network and Support Vector Machine Optimization Based on Flow Regime Algorithm Taking into Account Uncertainties of Soft Computing Models," Sustainability, MDPI, vol. 11(23), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:551-:d:511388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.