IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i5p465-d505274.html
   My bibliography  Save this article

A 2D Membrane MEMS Device Model with Fringing Field: Curvature-Dependent Electrostatic Field and Optimal Control

Author

Listed:
  • Paolo Di Barba

    (Dipartimento di Ingegneria Industriale e dell’Informazione, University of Pavia, Via A. Ferrata 5, 27100 Pavia, Italy)

  • Luisa Fattorusso

    (Dipartimento di Ingegneria dell’Informazione Infrastrutture Energia Sostenibile, “Mediterranea” University, Via Graziella Feo di Vito, 89124 Reggio Calabria, Italy)

  • Mario Versaci

    (Dipartimento di Ingegneria Civile Energia Ambiente e Materiali, “Mediterranea” University, Via Graziella Feo di Vito, 89124 Reggio Calabria, Italy)

Abstract

An important problem in membrane micro-electric-mechanical-system (MEMS) modeling is the fringing-field phenomenon, of which the main effect consists of force-line deformation of electrostatic field E near the edges of the plates, producing the anomalous deformation of the membrane when external voltage V is applied. In the framework of a 2D circular membrane MEMS, representing the fringing-field effect depending on | ∇ u | 2 with the u profile of the membrane, and since strong E produces strong deformation of the membrane, we consider | E | proportional to the mean curvature of the membrane, obtaining a new nonlinear second-order differential model without explicit singularities. In this paper, the main purpose was the analytical study of this model, obtaining an algebraic condition ensuring the existence of at least one solution for it that depends on both the electromechanical properties of the material constituting the membrane and the positive parameter δ that weighs the terms | ∇ u | 2 . However, even if the the study of the model did not ensure the uniqueness of the solution, it made it possible to achieve the goal of finding a stable equilibrium position. Moreover, a range of admissible values of V were obtained in order, on the one hand, to win the mechanical inertia of the membrane and, on the other hand, to ensure that the membrane did not touch the upper disk of the device. Lastly, some optimal control conditions based on the variation of potential energy are presented and discussed.

Suggested Citation

  • Paolo Di Barba & Luisa Fattorusso & Mario Versaci, 2021. "A 2D Membrane MEMS Device Model with Fringing Field: Curvature-Dependent Electrostatic Field and Optimal Control," Mathematics, MDPI, vol. 9(5), pages 1-26, February.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:465-:d:505274
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/5/465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/5/465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Weiqun & Qin, Gang & Zhu, Qiao & Hu, Guangdi, 2018. "Synchronous extraction circuit with self-adaptive peak-detection mechanical switches design for piezoelectric energy harvesting," Applied Energy, Elsevier, vol. 230(C), pages 1292-1303.
    2. Maharjan, Pukar & Salauddin, Md & Cho, Hyunok & Park, Jae Yeong, 2018. "An indoor power line based magnetic field energy harvester for self-powered wireless sensors in smart home applications," Applied Energy, Elsevier, vol. 232(C), pages 398-408.
    3. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Lin, S.X. & Wang, L., 2019. "Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters," Applied Energy, Elsevier, vol. 254(C).
    4. He, Lipeng & Liu, Lei & Zhou, Jianwen & Yu, Gang & Sun, Baoyu & Cheng, Guangming, 2022. "Design and analysis of a double-acting nonlinear wideband piezoelectric energy harvester under plucking and collision," Energy, Elsevier, vol. 239(PD).
    5. Tan, Qinxue & Fan, Kangqi & Tao, Kai & Zhao, Liya & Cai, Meiling, 2020. "A two-degree-of-freedom string-driven rotor for efficient energy harvesting from ultra-low frequency excitations," Energy, Elsevier, vol. 196(C).
    6. Ibrahim, Alwathiqbellah & Hassan, Mostafa, 2023. "Extended bandwidth of 2DOF double impact triboelectric energy harvesting: Theoretical and experimental verification," Applied Energy, Elsevier, vol. 333(C).
    7. Md Maruf Hossain Shuvo & Twisha Titirsha & Nazmul Amin & Syed Kamrul Islam, 2022. "Energy Harvesting in Implantable and Wearable Medical Devices for Enduring Precision Healthcare," Energies, MDPI, vol. 15(20), pages 1-50, October.
    8. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    9. Lee, Hyeon & Sharpes, Nathan & Abdelmoula, Hichem & Abdelkefi, Abdessattar & Priya, Shashank, 2018. "Higher power generation from torsion-dominant mode in a zigzag shaped two-dimensional energy harvester," Applied Energy, Elsevier, vol. 216(C), pages 494-503.
    10. Gu, Yuhan & Liu, Weiqun & Zhao, Caiyou & Wang, Ping, 2020. "A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting," Applied Energy, Elsevier, vol. 266(C).
    11. Huang, Xingbao, 2024. "Exploiting multi-stiffness combination inspired absorbers for simultaneous energy harvesting and vibration mitigation," Applied Energy, Elsevier, vol. 364(C).
    12. Han, Ning & Zhang, Hanfang & Lu, Peipei & Liu, Zixuan, 2024. "Resonance response and chaotic analysis for an irrational pendulum system," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    13. Aldawood, Ghufran & Nguyen, Hieu Tri & Bardaweel, Hamzeh, 2019. "High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
    15. Paolo Di Barba & Maria Evelina Mognaschi & Elisabetta Sieni, 2020. "Many Objective Optimization of a Magnetic Micro–Electro–Mechanical (MEMS) Micromirror with Bounded MP-NSGA Algorithm," Mathematics, MDPI, vol. 8(9), pages 1-17, September.
    16. Zhou, Jianwen & He, Lipeng & Yu, Gang & Liu, Lei & Gu, Xiangfeng & Wang, Yuecheng & Cheng, Guangming, 2022. "Research on cam frequency-increasing hybrid piezoelectric electromagnetic energy harvester with center symmetric structure," Renewable Energy, Elsevier, vol. 185(C), pages 959-969.
    17. Peng, Yan & Xu, Zhibing & Wang, Min & Li, Zhongjie & Peng, Jinlin & Luo, Jun & Xie, Shaorong & Pu, Huayan & Yang, Zhengbao, 2021. "Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators," Renewable Energy, Elsevier, vol. 172(C), pages 551-563.
    18. Wang, Shuai & Wang, Chaohui & Gao, Zhiwei & Cao, Hongyun, 2020. "Design and performance of a cantilever piezoelectric power generation device for real-time road safety warnings," Applied Energy, Elsevier, vol. 276(C).
    19. Zhang, Jinhui & Qin, Lifeng, 2019. "A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism," Applied Energy, Elsevier, vol. 240(C), pages 26-34.
    20. Ghodsi, Mojtaba & Ziaiefar, Hamidreza & Mohammadzaheri, Morteza & Al-Yahmedi, Amur, 2019. "Modeling and characterization of permendur cantilever beam for energy harvesting," Energy, Elsevier, vol. 176(C), pages 561-569.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:465-:d:505274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.