Impact of the number of classes and transition rules of bonus-malus system on its efficiency in tariff setting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bonsdorff, Heikki, 1992. "On the Convergence Rate of Bonus-Malus Systems," ASTIN Bulletin, Cambridge University Press, vol. 22(2), pages 217-223, November.
- Katrien Antonio & Emiliano Valdez, 2012. "Statistical concepts of a priori and a posteriori risk classification in insurance," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 187-224, June.
- Niemiec, Małgorzata, 2007. "Bonus-malus Systems as Markov Set-chains," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 53-65, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pablo J. Villacorta & Laura González-Vila Puchades & Jorge de Andrés-Sánchez, 2021. "Fuzzy Markovian Bonus-Malus Systems in Non-Life Insurance," Mathematics, MDPI, vol. 9(4), pages 1-23, February.
- Dhiti Osatakul & Xueyuan Wu, 2021. "Discrete-Time Risk Models with Claim Correlated Premiums in a Markovian Environment," Risks, MDPI, vol. 9(1), pages 1-23, January.
- Søren Asmussen, 2014. "Modeling and Performance of Bonus-Malus Systems: Stationarity versus Age-Correction," Risks, MDPI, vol. 2(1), pages 1-25, March.
- Adlane Haffar & Éric Le Fur & Mohamed Khordj, 2023. "Securitization of pandemic risk by using coronabond," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(2), pages 209-229, June.
- Yves Staudt & Joël Wagner, 2021. "Assessing the Performance of Random Forests for Modeling Claim Severity in Collision Car Insurance," Risks, MDPI, vol. 9(3), pages 1-28, March.
- Simon Sølvsten & Brooks Kaiser, 2023. "Do insurers adjust prices for the adoption of loss prevention technologies? Evidence from Danish municipal contracts," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 26(1), pages 57-82, March.
- Mihaela Covrig & Iulian Mircea & Gheorghita Zbaganu & Alexandru Coser & Alexandru Tindeche, 2015. "Using R In Generalized Linear Models," Romanian Statistical Review, Romanian Statistical Review, vol. 63(3), pages 33-45, September.
- Jeong, Himchan & Valdez, Emiliano A., 2020. "Predictive compound risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 182-195.
- Mihaela DAVID, 2014. "Modeling The Frequency Of Claims In Auto Insurance With Application To A French Case," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 13, pages 69-85, June.
- Lee, Woojoo & Kim, Jeonghwan & Ahn, Jae Youn, 2020. "The Poisson random effect model for experience ratemaking: Limitations and alternative solutions," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 26-36.
- Ramon Alemany & Catalina Bolance & Montserrat Guillen, 2014. "Accounting for severity of risk when pricing insurance products," Working Papers 2014-05, Universitat de Barcelona, UB Riskcenter.
- Levon Barseghyan & Francesca Molinari & Darcy Steeg Morris & Joshua C. Teitelbaum, 2020. "The Cost of Legal Restrictions on Experience Rating," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 17(1), pages 38-70, March.
- Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
- Serpil Bülbül & Kemal Baykal, 2016. "Optimal Bonus-Malus System Design in Motor Third-Party Liability Insurance in Turkey: Negative Binomial Model," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(8), pages 205-205, August.
More about this item
Keywords
MTPL insurance; effectiveness measures of bonus-malus systems; Markov chains;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgh:annals:i:37:y:2015:p:253-268. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michał Bernardelli (email available below). General contact details of provider: https://edirc.repec.org/data/sgwawpl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.