IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i23p3079-d691263.html
   My bibliography  Save this article

Beyond Topological Persistence: Starting from Networks

Author

Listed:
  • Mattia G. Bergomi

    (Veos Digital, 20124 Milan, Italy)

  • Massimo Ferri

    (Advanced Research Center on Electronic Systems “E. De Castro”, Department of Mathematics, Università di Bologna, 40126 Bologna, Italy)

  • Pietro Vertechi

    (Veos Digital, 20124 Milan, Italy)

  • Lorenzo Zuffi

    (Advanced Research Center on Electronic Systems “E. De Castro”, Department of Mathematics, Università di Bologna, 40126 Bologna, Italy)

Abstract

Persistent homology enables fast and computable comparison of topological objects. We give some instances of a recent extension of the theory of persistence, guaranteeing robustness and computability for relevant data types, like simple graphs and digraphs. We focus on categorical persistence functions that allow us to study in full generality strong kinds of connectedness—clique communities, k -vertex, and k -edge connectedness—directly on simple graphs and strong connectedness in digraphs.

Suggested Citation

  • Mattia G. Bergomi & Massimo Ferri & Pietro Vertechi & Lorenzo Zuffi, 2021. "Beyond Topological Persistence: Starting from Networks," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3079-:d:691263
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/23/3079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/23/3079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    2. Toivonen, Riitta & Onnela, Jukka-Pekka & Saramäki, Jari & Hyvönen, Jörkki & Kaski, Kimmo, 2006. "A model for social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 851-860.
    3. Gergely Palla & Albert-László Barabási & Tamás Vicsek, 2007. "Quantifying social group evolution," Nature, Nature, vol. 446(7136), pages 664-667, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Xiwen & Ma, Zhongjun & Zhou, Yaoming, 2023. "Data-driven static and dynamic resilience assessment of the global liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    2. Jinyang Dong & Jiamou Liu & Tiezhong Liu, 2021. "The impact of top scientists on the community development of basic research directed by government funding: evidence from program 973 in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8561-8579, October.
    3. Federico Botta & Charo I del Genio, 2017. "Analysis of the communities of an urban mobile phone network," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-14, March.
    4. Guan, Yuan-Pan & You, Zhi-Qiang & Han, Xiao-Pu, 2016. "Reconstruction of social group networks from friendship networks using a tag-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 485-492.
    5. Sangyoon Yi & Jinho Choi, 2012. "The organization of scientific knowledge: the structural characteristics of keyword networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 1015-1026, March.
    6. Martin Rosvall & Carl T Bergstrom, 2010. "Mapping Change in Large Networks," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-7, January.
    7. Kim, Paul & Kim, Sangwook, 2015. "Detecting overlapping and hierarchical communities in complex network using interaction-based edge clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 46-56.
    8. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    9. Ni, Shunjiang & Weng, Wenguo & Zhang, Hui, 2011. "Modeling the effects of social impact on epidemic spreading in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4528-4534.
    10. Xiaoguang Wang & Qikai Cheng & Wei Lu, 2014. "Analyzing evolution of research topics with NEViewer: a new method based on dynamic co-word networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1253-1271, November.
    11. Ma, Guoshuai & Yuhua, Qian & Zhang, Yayu & Yan, Hongren & Cheng, Honghong & Hu, Zhiguo, 2022. "The recognition of kernel research team," Journal of Informetrics, Elsevier, vol. 16(4).
    12. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Community detection using local neighborhood in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 665-677.
    13. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    14. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    15. Pirvu Daniela & Barbuceanu Mircea, 2016. "Recent Contributions Of The Statistical Physics In The Research Of Banking, Stock Exchange And Foreign Exchange Markets," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 2, pages 85-92, April.
    16. Daniel M. Ringel & Bernd Skiera, 2016. "Visualizing Asymmetric Competition Among More Than 1,000 Products Using Big Search Data," Marketing Science, INFORMS, vol. 35(3), pages 511-534, May.
    17. Yu, Shuo & Alqahtani, Fayez & Tolba, Amr & Lee, Ivan & Jia, Tao & Xia, Feng, 2022. "Collaborative Team Recognition: A Core Plus Extension Structure," Journal of Informetrics, Elsevier, vol. 16(4).
    18. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    19. Roth, Camille, 2007. "Empiricism for descriptive social network models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 53-58.
    20. Johansson, Tobias, 2017. "Gossip spread in social network Models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 126-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3079-:d:691263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.