IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i23p3078-d691258.html
   My bibliography  Save this article

A Generative Model for Correlated Graph Signals

Author

Listed:
  • Pavel Loskot

    (ZJU-UIUC Institute, Haining 314400, China)

Abstract

A graph signal is a random vector with a partially known statistical description. The observations are usually sufficient to determine marginal distributions of graph node variables and their pairwise correlations representing the graph edges. However, the curse of dimensionality often prevents estimating a full joint distribution of all variables from the available observations. This paper introduces a computationally effective generative model to sample from arbitrary but known marginal distributions with defined pairwise correlations. Numerical experiments show that the proposed generative model is generally accurate for correlation coefficients with magnitudes up to about 0.3, whilst larger correlations can be obtained at the cost of distribution approximation accuracy. The generative models of graph signals can also be used to sample multivariate distributions for which closed-form mathematical expressions are not known or are too complex.

Suggested Citation

  • Pavel Loskot, 2021. "A Generative Model for Correlated Graph Signals," Mathematics, MDPI, vol. 9(23), pages 1-12, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3078-:d:691258
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/23/3078/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/23/3078/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. O’Brien, Travis A. & Kashinath, Karthik & Cavanaugh, Nicholas R. & Collins, William D. & O’Brien, John P., 2016. "A fast and objective multidimensional kernel density estimation method: fastKDE," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 148-160.
    2. Pavel Loskot, 2021. "Polynomial Representations of High-Dimensional Observations of Random Processes," Mathematics, MDPI, vol. 9(2), pages 1-24, January.
    3. Kundu, Debasis & Gupta, Rameshwar D., 2007. "A convenient way of generating gamma random variables using generalized exponential distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2796-2802, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Palacios-González & Rosa M. García-Fernández, 2020. "A faster algorithm to estimate multiresolution densities," Computational Statistics, Springer, vol. 35(3), pages 1207-1230, September.
    2. Kundu, Debasis & Gupta, Rameshwar D., 2008. "Generalized exponential distribution: Bayesian estimations," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1873-1883, January.
    3. Yumi Oh & Peng Lyu & Sunwoo Ko & Jeongik Min & Juwhan Song, 2024. "Enhancing Broiler Weight Estimation through Gaussian Kernel Density Estimation Modeling," Agriculture, MDPI, vol. 14(6), pages 1-20, May.
    4. Chuanhai Liu & Ryan Martin & Nick Syring, 2017. "Efficient simulation from a gamma distribution with small shape parameter," Computational Statistics, Springer, vol. 32(4), pages 1767-1775, December.
    5. Liu, Zhi-Feng & Liu, You-Yuan & Chen, Xiao-Rui & Zhang, Shu-Rui & Luo, Xing-Fu & Li, Ling-Ling & Yang, Yi-Zhou & You, Guo-Dong, 2024. "A novel deep learning-based evolutionary model with potential attention and memory decay-enhancement strategy for short-term wind power point-interval forecasting," Applied Energy, Elsevier, vol. 360(C).
    6. Ong, S.H. & Lee, Wen-Jau, 2008. "Computer generation of negative binomial variates by envelope rejection," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4175-4183, May.
    7. Meintanis, Simos G., 2008. "A new approach of goodness-of-fit testing for exponentiated laws applied to the generalized Rayleigh distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2496-2503, January.
    8. del Baño Rollin, Sebastian & Ferreiro-Castilla, Albert & Utzet, Frederic, 2010. "On the density of log-spot in the Heston volatility model," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 2037-2063, September.
    9. DMSLB Dissanayake & Takehiro Morimoto & Yuji Murayama & Manjula Ranagalage & Hepi H. Handayani, 2018. "Impact of Urban Surface Characteristics and Socio-Economic Variables on the Spatial Variation of Land Surface Temperature in Lagos City, Nigeria," Sustainability, MDPI, vol. 11(1), pages 1-23, December.
    10. P. Luizi & F. Cruz & J. Graaf, 2010. "Assessing the Quality of Pseudo-Random Number Generators," Computational Economics, Springer;Society for Computational Economics, vol. 36(1), pages 57-67, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3078-:d:691258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.