IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i6p809-d1400045.html
   My bibliography  Save this article

Enhancing Broiler Weight Estimation through Gaussian Kernel Density Estimation Modeling

Author

Listed:
  • Yumi Oh

    (Graduate School of Artificial Intelligence, Jeonju University, Jeonju-si 55069, Republic of Korea
    Artificial Intelligence Research Center, Jeonju University, Jeonju-si 55069, Republic of Korea)

  • Peng Lyu

    (Graduate School of Artificial Intelligence, Jeonju University, Jeonju-si 55069, Republic of Korea
    Artificial Intelligence Research Center, Jeonju University, Jeonju-si 55069, Republic of Korea)

  • Sunwoo Ko

    (Graduate School of Artificial Intelligence, Jeonju University, Jeonju-si 55069, Republic of Korea
    Artificial Intelligence Research Center, Jeonju University, Jeonju-si 55069, Republic of Korea)

  • Jeongik Min

    (Graduate School of Artificial Intelligence, Jeonju University, Jeonju-si 55069, Republic of Korea
    Artificial Intelligence Research Center, Jeonju University, Jeonju-si 55069, Republic of Korea)

  • Juwhan Song

    (Graduate School of Artificial Intelligence, Jeonju University, Jeonju-si 55069, Republic of Korea
    Artificial Intelligence Research Center, Jeonju University, Jeonju-si 55069, Republic of Korea)

Abstract

The management of individual weights in broiler farming is not only crucial for increasing farm income but also directly linked to the revenue growth of integrated broiler companies, necessitating prompt resolution. This paper proposes a model to estimate daily average broiler weights using time and weight data collected through scales. In the proposed model, a method of self-adjusting weights in the bandwidth calculation formula is employed, and the daily average weight representative value is estimated using KDE. The focus of this study is to contribute to the individual weight management of broilers by intensively researching daily fluctuations in average broiler weight. To address this, weight and time data are collected and preprocessed through scales. The Gaussian kernel density estimation model proposed in this paper aims to estimate the representative value of the daily average weight of a single broiler using statistical estimation methods, allowing for self-adjustment of bandwidth values. When applied to the dataset collected through scales, the proposed Gaussian kernel density estimation model with self-adjustable bandwidth values confirmed that the estimated daily weight did not deviate beyond the error range of ±50 g compared with the actual measured values. The next step of this study is to systematically understand the impact of the broiler environment on weight for sustainable management strategies for broiler demand, derive optimal rearing conditions for each farm by combining location and weight data, and develop a model for predicting daily average weight values. The ultimate goal is to develop an artificial intelligence model suitable for weight management systems by utilizing the estimated daily average weight of a single broiler even in the presence of error data collected from multiple weight measurements, enabling more efficient automatic measurement of broiler weight and supporting both farms and broiler demand.

Suggested Citation

  • Yumi Oh & Peng Lyu & Sunwoo Ko & Jeongik Min & Juwhan Song, 2024. "Enhancing Broiler Weight Estimation through Gaussian Kernel Density Estimation Modeling," Agriculture, MDPI, vol. 14(6), pages 1-20, May.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:809-:d:1400045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/6/809/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/6/809/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. O’Brien, Travis A. & Kashinath, Karthik & Cavanaugh, Nicholas R. & Collins, William D. & O’Brien, John P., 2016. "A fast and objective multidimensional kernel density estimation method: fastKDE," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 148-160.
    2. Su Chen, 2015. "Optimal Bandwidth Selection for Kernel Density Functionals Estimation," Journal of Probability and Statistics, Hindawi, vol. 2015, pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moawia Alghalith, 2022. "Methods in Econophysics: Estimating the Probability Density and Volatility," Papers 2301.10178, arXiv.org.
    2. Federico Palacios-González & Rosa M. García-Fernández, 2020. "A faster algorithm to estimate multiresolution densities," Computational Statistics, Springer, vol. 35(3), pages 1207-1230, September.
    3. Ye Tian & Yasunari Yokota, 2019. "Estimating the Major Cluster by Mean-Shift with Updating Kernel," Mathematics, MDPI, vol. 7(9), pages 1-25, August.
    4. Pavel Loskot, 2021. "A Generative Model for Correlated Graph Signals," Mathematics, MDPI, vol. 9(23), pages 1-12, November.
    5. Liu, Zhi-Feng & Liu, You-Yuan & Chen, Xiao-Rui & Zhang, Shu-Rui & Luo, Xing-Fu & Li, Ling-Ling & Yang, Yi-Zhou & You, Guo-Dong, 2024. "A novel deep learning-based evolutionary model with potential attention and memory decay-enhancement strategy for short-term wind power point-interval forecasting," Applied Energy, Elsevier, vol. 360(C).
    6. Shahid Latif & Slobodan P. Simonovic, 2023. "Trivariate Probabilistic Assessments of the Compound Flooding Events Using the 3-D Fully Nested Archimedean (FNA) Copula in the Semiparametric Distribution Setting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1641-1693, March.
    7. John Paolo Rosales Rivera, 2022. "A nonparametric approach to understanding poverty in the Philippines: Evidence from the Family Income and Expenditure Survey," Poverty & Public Policy, John Wiley & Sons, vol. 14(3), pages 242-267, September.
    8. Shahid Latif & Slobodan P. Simonovic, 2022. "Nonparametric Approach to Copula Estimation in Compounding The Joint Impact of Storm Surge and Rainfall Events in Coastal Flood Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5599-5632, November.
    9. DMSLB Dissanayake & Takehiro Morimoto & Yuji Murayama & Manjula Ranagalage & Hepi H. Handayani, 2018. "Impact of Urban Surface Characteristics and Socio-Economic Variables on the Spatial Variation of Land Surface Temperature in Lagos City, Nigeria," Sustainability, MDPI, vol. 11(1), pages 1-23, December.
    10. Yi Jin & Yulin He & Defa Huang, 2021. "An Improved Variable Kernel Density Estimator Based on L 2 Regularization," Mathematics, MDPI, vol. 9(16), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:809-:d:1400045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.