IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i22p2881-d677918.html
   My bibliography  Save this article

The Stability Analysis of A-Quartic Functional Equation

Author

Listed:
  • Chinnaappu Muthamilarasi

    (Department of Mathematics, Government Arts College for Men, Krishnagiri, Tamilnadu 635001, India
    These authors contributed equally to this work.)

  • Shyam Sundar Santra

    (Department of Mathematics, JIS College of Engineering, Kalyani, West Bengal 741235, India
    These authors contributed equally to this work.)

  • Ganapathy Balasubramanian

    (Department of Mathematics, Government Arts College for Men, Krishnagiri, Tamilnadu 635001, India
    These authors contributed equally to this work.)

  • Vediyappan Govindan

    (Department of Mathematics, Government Arts College for Men, Krishnagiri, Tamilnadu 635001, India
    These authors contributed equally to this work.)

  • Rami Ahmad El-Nabulsi

    (Research Center for Quantum Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
    Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
    Athens Institute for Education and Research, Mathematics and Physics Divisions, 8 Valaoritou Street, Kolonaki, 10671 Athens, Greece
    These authors contributed equally to this work.)

  • Khaled Mohamed Khedher

    (Department of Civil Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
    Department of Civil Engineering, High Institute of Technological Studies, Mrezgua University Campus, Nabeul 8000, Tunisia
    These authors contributed equally to this work.)

Abstract

In this paper, we study the general solution of the functional equation, which is derived from additive–quartic mappings. In addition, we establish the generalized Hyers–Ulam stability of the additive–quartic functional equation in Banach spaces by using direct and fixed point methods.

Suggested Citation

  • Chinnaappu Muthamilarasi & Shyam Sundar Santra & Ganapathy Balasubramanian & Vediyappan Govindan & Rami Ahmad El-Nabulsi & Khaled Mohamed Khedher, 2021. "The Stability Analysis of A-Quartic Functional Equation," Mathematics, MDPI, vol. 9(22), pages 1-16, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2881-:d:677918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/22/2881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/22/2881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soon-Mo Jung, 2011. "Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis," Springer Optimization and Its Applications, Springer, number 978-1-4419-9637-4, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ginkyu Choi & Soon-Mo Jung, 2019. "A Dilation Invariance Method and the Stability of Inhomogeneous Wave Equations," Mathematics, MDPI, vol. 7(1), pages 1-17, January.
    2. Abdellatif Benchaib & Abdelkrim Salim & Saïd Abbas & Mouffak Benchohra, 2023. "New Stability Results for Abstract Fractional Differential Equations with Delay and Non-Instantaneous Impulses," Mathematics, MDPI, vol. 11(16), pages 1-19, August.
    3. Soon-Mo Jung & Yang-Hi Lee, 2017. "A Fixed Point Approach to the Stability of a Mean Value Type Functional Equation," Mathematics, MDPI, vol. 5(4), pages 1-9, December.
    4. Ginkyu Choi & Soon-Mo Jung & Jaiok Roh, 2019. "Some Properties of Approximate Solutions of Linear Differential Equations," Mathematics, MDPI, vol. 7(9), pages 1-11, September.
    5. Abe, Takaaki & Nakada, Satoshi, 2023. "The in-group egalitarian Owen values," Games and Economic Behavior, Elsevier, vol. 142(C), pages 1-16.
    6. Soon-Mo Jung & Ji-Hye Kim, 2018. "Hyers-Ulam Stability of Lagrange’s Mean Value Points in Two Variables," Mathematics, MDPI, vol. 6(11), pages 1-8, October.
    7. Soon-Mo Jung & Ki-Suk Lee & Michael Th. Rassias & Sung-Mo Yang, 2020. "Approximation Properties of Solutions of a Mean Value-Type Functional Inequality, II," Mathematics, MDPI, vol. 8(8), pages 1-8, August.
    8. Jagan Mohan Jonnalagadda, 2016. "Hyers-Ulam Stability of Fractional Nabla Difference Equations," International Journal of Analysis, Hindawi, vol. 2016, pages 1-5, September.
    9. El-sayed El-hady & Janusz Brzdęk, 2022. "Banach Limit and Ulam Stability of Nonhomogeneous Cauchy Equation," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
    10. Ginkyu Choi & Soon-Mo Jung, 2020. "The Approximation Property of a One-Dimensional, Time Independent Schrödinger Equation with a Hyperbolic Potential Well," Mathematics, MDPI, vol. 8(8), pages 1-8, August.
    11. Naveed Ahmad & Zeeshan Ali & Kamal Shah & Akbar Zada & Ghaus ur Rahman, 2018. "Analysis of Implicit Type Nonlinear Dynamical Problem of Impulsive Fractional Differential Equations," Complexity, Hindawi, vol. 2018, pages 1-15, February.
    12. Zahra Eidinejad & Reza Saadati & Radko Mesiar, 2022. "Optimum Approximation for ς –Lie Homomorphisms and Jordan ς –Lie Homomorphisms in ς –Lie Algebras by Aggregation Control Functions," Mathematics, MDPI, vol. 10(10), pages 1-17, May.
    13. Zhenyu Bai & Chuanzhi Bai, 2024. "Hyers–Ulam Stability of Caputo Fractional Stochastic Delay Differential Systems with Poisson Jumps," Mathematics, MDPI, vol. 12(6), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2881-:d:677918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.