IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i10p1695-d816215.html
   My bibliography  Save this article

Banach Limit and Ulam Stability of Nonhomogeneous Cauchy Equation

Author

Listed:
  • El-sayed El-hady

    (Mathematics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
    Basic Science Department, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt)

  • Janusz Brzdęk

    (Faculty of Applied Mathematics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland)

Abstract

We prove new results on Ulam stability of the nonhomogeneous Cauchy functional equation f ( x + y ) = f ( x ) + f ( y ) + d ( x , y ) in the class of mappings f from a square symmetric groupoid ( H , + ) into the set of reals R . The mapping d : H 2 → R is assumed to be given and satisfy some weak natural assumption. The equation arises naturally, e.g., in the theory of information in a description of generating functions of branching measures of information. Moreover, we provide a suitable example of application of our results in this area at the very end of this paper. The main tool used in the proofs is the Banach limit.

Suggested Citation

  • El-sayed El-hady & Janusz Brzdęk, 2022. "Banach Limit and Ulam Stability of Nonhomogeneous Cauchy Equation," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1695-:d:816215
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/10/1695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/10/1695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soon-Mo Jung, 2011. "Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis," Springer Optimization and Its Applications, Springer, number 978-1-4419-9637-4, December.
    2. Zbigniew Gajda, 1991. "On stability of additive mappings," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 14, pages 1-4, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ick-Soon Chang & Yang-Hi Lee & Jaiok Roh, 2023. "Representation and Stability of General Nonic Functional Equation," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    2. Ginkyu Choi & Soon-Mo Jung, 2019. "A Dilation Invariance Method and the Stability of Inhomogeneous Wave Equations," Mathematics, MDPI, vol. 7(1), pages 1-17, January.
    3. Ponmana Selvan Arumugam & Won-Gil Park & Jaiok Roh, 2024. "Stability and Instability of an Apollonius-Type Functional Equation," Mathematics, MDPI, vol. 12(14), pages 1-11, July.
    4. Elhoucien Elqorachi & Michael Th. Rassias, 2018. "Generalized Hyers-Ulam Stability of Trigonometric Functional Equations," Mathematics, MDPI, vol. 6(5), pages 1-11, May.
    5. Abdellatif Benchaib & Abdelkrim Salim & Saïd Abbas & Mouffak Benchohra, 2023. "New Stability Results for Abstract Fractional Differential Equations with Delay and Non-Instantaneous Impulses," Mathematics, MDPI, vol. 11(16), pages 1-19, August.
    6. Soon-Mo Jung & Yang-Hi Lee, 2017. "A Fixed Point Approach to the Stability of a Mean Value Type Functional Equation," Mathematics, MDPI, vol. 5(4), pages 1-9, December.
    7. Ginkyu Choi & Soon-Mo Jung & Jaiok Roh, 2019. "Some Properties of Approximate Solutions of Linear Differential Equations," Mathematics, MDPI, vol. 7(9), pages 1-11, September.
    8. Abe, Takaaki & Nakada, Satoshi, 2023. "The in-group egalitarian Owen values," Games and Economic Behavior, Elsevier, vol. 142(C), pages 1-16.
    9. P. Agilan & K. Julietraja & Mohammed M. A. Almazah & Ammar Alsinai, 2023. "Stability Analysis of a New Class of Series Type Additive Functional Equation in Banach Spaces: Direct and Fixed Point Techniques," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    10. Kandhasamy Tamilvanan & Yahya Almalki & Syed Abdul Mohiuddine & Ravi P. Agarwal, 2022. "Stability Results of Quadratic-Additive Functional Equation Based on Hyers Technique in Matrix Paranormed Spaces," Mathematics, MDPI, vol. 10(11), pages 1-17, June.
    11. Heejeong Koh, 2023. "Stability Estimates for an Arithmetic Functional Equation with Brzdȩk Fixed Point Approaches," Mathematics, MDPI, vol. 11(7), pages 1-10, March.
    12. Soon-Mo Jung & Ji-Hye Kim, 2018. "Hyers-Ulam Stability of Lagrange’s Mean Value Points in Two Variables," Mathematics, MDPI, vol. 6(11), pages 1-8, October.
    13. Kandhasamy Tamilvanan & Ali H. Alkhaldi & Ravi P. Agarwal & Abdulaziz M. Alanazi, 2023. "Fixed Point Approach: Ulam Stability Results of Functional Equation in Non-Archimedean Fuzzy φ -2-Normed Spaces and Non-Archimedean Banach Spaces," Mathematics, MDPI, vol. 11(2), pages 1-24, January.
    14. Soon-Mo Jung & Ki-Suk Lee & Michael Th. Rassias & Sung-Mo Yang, 2020. "Approximation Properties of Solutions of a Mean Value-Type Functional Inequality, II," Mathematics, MDPI, vol. 8(8), pages 1-8, August.
    15. Abdulaziz M. Alanazi & G. Muhiuddin & K. Tamilvanan & Ebtehaj N. Alenze & Abdelhalim Ebaid & K. Loganathan, 2020. "Fuzzy Stability Results of Finite Variable Additive Functional Equation: Direct and Fixed Point Methods," Mathematics, MDPI, vol. 8(7), pages 1-14, June.
    16. Kandhasamy Tamilvanan & Abdulaziz Mohammed Alanazi & John Michael Rassias & Ali H. Alkhaldi, 2021. "Ulam Stabilities and Instabilities of Euler–Lagrange-Rassias Quadratic Functional Equation in Non-Archimedean IFN Spaces," Mathematics, MDPI, vol. 9(23), pages 1-16, November.
    17. Yong-Soo Jung, 2016. "On the stability of higher ring left derivations," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(3), pages 523-533, September.
    18. Jae-Hyeong Bae & Ick-Soon Chang & Hark-Mahn Kim, 2022. "Almost Generalized Derivation on Banach Algebras," Mathematics, MDPI, vol. 10(24), pages 1-8, December.
    19. Sang Og Kim, 2020. "Stability of the Fréchet Equation in Quasi-Banach Spaces," Mathematics, MDPI, vol. 8(4), pages 1-20, April.
    20. Jagan Mohan Jonnalagadda, 2016. "Hyers-Ulam Stability of Fractional Nabla Difference Equations," International Journal of Analysis, Hindawi, vol. 2016, pages 1-5, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1695-:d:816215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.