IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i22p2849-d676016.html
   My bibliography  Save this article

Estimation of COVID-19 Transmission and Advice on Public Health Interventions

Author

Listed:
  • Qingqing Ji

    (University of Chinese Academy of Sciences, Beijing 100049, China
    Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China)

  • Xu Zhao

    (Faculty of Science, Beijing University of Technology, Beijing 100124, China)

  • Hanlin Ma

    (Faculty of Science, Beijing University of Technology, Beijing 100124, China)

  • Qing Liu

    (Faculty of Science, Beijing University of Technology, Beijing 100124, China)

  • Yiwen Liu

    (University of Chinese Academy of Sciences, Beijing 100049, China
    Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China)

  • Qiyue Guan

    (Party School of the Central Committee of C.P.C (National Academy of Governance), Beijing 100091, China)

Abstract

At the end of 2019, an outbreak of the novel coronavirus (COVID-19) made a profound impact on the country’s production and people’s daily lives. Up until now, COVID-19 has not been fully controlled all over the world. Based on the clinical research progress of infectious diseases, combined with epidemiological theories and possible disease control measures, this paper establishes a Susceptible Infected Recovered (SIR) model that meets the characteristics of the transmission of the new coronavirus, using the least square estimation (LSE) method to estimate the model parameters. The simulation results show that quarantine and containment measures as well as vaccine and drug development measures can control the spread of the epidemic effectively. As can be seen from the prediction results of the model, the simulation results of the epidemic development of the whole country and Nanjing are in agreement with the real situation of the epidemic, and the number of confirmed cases is close to the real value. At the same time, the model’s prediction of the prevention effect and control measures have shed new light on epidemic prevention and control.

Suggested Citation

  • Qingqing Ji & Xu Zhao & Hanlin Ma & Qing Liu & Yiwen Liu & Qiyue Guan, 2021. "Estimation of COVID-19 Transmission and Advice on Public Health Interventions," Mathematics, MDPI, vol. 9(22), pages 1-18, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2849-:d:676016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/22/2849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/22/2849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Phenyo E. Lekone & Bärbel F. Finkenstädt, 2006. "Statistical Inference in a Stochastic Epidemic SEIR Model with Control Intervention: Ebola as a Case Study," Biometrics, The International Biometric Society, vol. 62(4), pages 1170-1177, December.
    2. Sepehr Rafieenasab & Amir-Pouyan Zahiri & Ehsan Roohi, 2020. "Prediction of peak and termination of novel coronavirus COVID-19 epidemic in Iran," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamara, Abdul A. & Wang, Xiangjun & Mouanguissa, Lagès Nadège, 2020. "Analytical solution for post-death transmission model of Ebola epidemics," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    2. Talal Daghriri & Michael Proctor & Sarah Matthews, 2022. "Evolution of Select Epidemiological Modeling and the Rise of Population Sentiment Analysis: A Literature Review and COVID-19 Sentiment Illustration," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    3. Erik Pruyt & Willem L. Auping & Jan H. Kwakkel, 2015. "Ebola in West Africa: Model-Based Exploration of Social Psychological Effects and Interventions," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(1), pages 2-14, January.
    4. Robin N Thompson & Christopher A Gilligan & Nik J Cunniffe, 2016. "Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-18, April.
    5. Maria Vittoria Barbarossa & Attila Dénes & Gábor Kiss & Yukihiko Nakata & Gergely Röst & Zsolt Vizi, 2015. "Transmission Dynamics and Final Epidemic Size of Ebola Virus Disease Outbreaks with Varying Interventions," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-21, July.
    6. Attar, M. Aykut & Tekin-Koru, Ayça, 2022. "Latent social distancing: Identification, causes and consequences," Economic Systems, Elsevier, vol. 46(1).
    7. Ba Chu & Shafiullah Qureshi, 2020. "Predicting the COVID-19 pandemic in Canada and the US," Economics Bulletin, AccessEcon, vol. 40(3), pages 2565-2585.
    8. Leigh Fisher & Jon Wakefield & Cici Bauer & Steve Self, 2017. "Time series modeling of pathogen-specific disease probabilities with subsampled data," Biometrics, The International Biometric Society, vol. 73(1), pages 283-293, March.
    9. Dongya Liu & Xinqi Zheng & Lei Zhang, 2021. "Simulation of Spatiotemporal Relationship between COVID-19 Propagation and Regional Economic Development in China," Land, MDPI, vol. 10(6), pages 1-15, June.
    10. Marie V. Ozanne & Grant D. Brown & Angela J. Toepp & Breanna M. Scorza & Jacob J. Oleson & Mary E. Wilson & Christine A. Petersen, 2020. "Bayesian compartmental models and associated reproductive numbers for an infection with multiple transmission modes," Biometrics, The International Biometric Society, vol. 76(3), pages 711-721, September.
    11. Carbone, Giuseppe & De Vincenzo, Ilario, 2022. "A general theory for infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    12. Ghufran Ahmad & Furqan Ahmed & Muhammad Suhail Rizwan & Javed Muhammad & Syeda Hira Fatima & Aamer Ikram & Hajo Zeeb, 2021. "Evaluating data-driven methods for short-term forecasts of cumulative SARS-CoV2 cases," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-21, May.
    13. Noureddine Ouerfelli & Narcisa Vrinceanu & Diana Coman & Adriana Lavinia Cioca, 2022. "Empirical Modeling of COVID-19 Evolution with High/Direct Impact on Public Health and Risk Assessment," IJERPH, MDPI, vol. 19(6), pages 1-13, March.
    14. Ndaïrou, Faïçal & Khalighi, Moein & Lahti, Leo, 2023. "Ebola epidemic model with dynamic population and memory," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    15. Aaron T. Porter & Jacob J. Oleson, 2013. "A Path-Specific SEIR Model for use with General Latent and Infectious Time Distributions," Biometrics, The International Biometric Society, vol. 69(1), pages 101-108, March.
    16. Luiz Hotta, 2010. "Bayesian Melding Estimation of a Stochastic SEIR Model," Mathematical Population Studies, Taylor & Francis Journals, vol. 17(2), pages 101-111.
    17. Gregory L Watson & Di Xiong & Lu Zhang & Joseph A Zoller & John Shamshoian & Phillip Sundin & Teresa Bufford & Anne W Rimoin & Marc A Suchard & Christina M Ramirez, 2021. "Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-20, March.
    18. Ben Balmford & James D. Annan & Julia C. Hargreaves & Marina Altoè & Ian J. Bateman, 2020. "Cross-Country Comparisons of Covid-19: Policy, Politics and the Price of Life," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 525-551, August.
    19. McKinley Trevelyan & Cook Alex R & Deardon Robert, 2009. "Inference in Epidemic Models without Likelihoods," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-40, July.
    20. Lu Tang & Yiwang Zhou & Lili Wang & Soumik Purkayastha & Leyao Zhang & Jie He & Fei Wang & Peter X.‐K. Song, 2020. "A Review of Multi‐Compartment Infectious Disease Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 462-513, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2849-:d:676016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.