IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i19p2503-d650723.html
   My bibliography  Save this article

Brownian Behavior in Coupled Chaotic Oscillators

Author

Listed:
  • Francisco Javier Martín-Pasquín

    (Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Alexander N. Pisarchik

    (Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28040 Madrid, Spain
    Neuroscience and Cognitive Technology Laboratory, Innopolis University, 420500 Kazan, Russia)

Abstract

Since the dynamical behavior of chaotic and stochastic systems is very similar, it is sometimes difficult to determine the nature of the movement. One of the best-studied stochastic processes is Brownian motion, a random walk that accurately describes many phenomena that occur in nature, including quantum mechanics. In this paper, we propose an approach that allows us to analyze chaotic dynamics using the Langevin equation describing dynamics of the phase difference between identical coupled chaotic oscillators. The time evolution of this phase difference can be explained by the biased Brownian motion, which is accepted in quantum mechanics for modeling thermal phenomena. Using a deterministic model based on chaotic Rössler oscillators, we are able to reproduce a similar time evolution for the phase difference. We show how the phenomenon of intermittent phase synchronization can be explained in terms of both stochastic and deterministic models. In addition, the existence of phase multistability in the phase synchronization regime is demonstrated.

Suggested Citation

  • Francisco Javier Martín-Pasquín & Alexander N. Pisarchik, 2021. "Brownian Behavior in Coupled Chaotic Oscillators," Mathematics, MDPI, vol. 9(19), pages 1-14, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2503-:d:650723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/19/2503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/19/2503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alves, Samuel B. & de Oliveira, Gilson F. & de Oliveira, Luimar C. & Passerat de Silans, Thierry & Chevrollier, Martine & Oriá, Marcos & de S. Cavalcante, Hugo L.D., 2016. "Characterization of diffusion processes: Normal and anomalous regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 392-401.
    2. P. Gaspard & M. E. Briggs & M. K. Francis & J. V. Sengers & R. W. Gammon & J. R. Dorfman & R. V. Calabrese, 1998. "Experimental evidence for microscopic chaos," Nature, Nature, vol. 394(6696), pages 865-868, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saša Nježić & Jasna Radulović & Fatima Živić & Ana Mirić & Živana Jovanović Pešić & Mina Vasković Jovanović & Nenad Grujović, 2022. "Chaotic Model of Brownian Motion in Relation to Drug Delivery Systems Using Ferromagnetic Particles," Mathematics, MDPI, vol. 10(24), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bildirici, Melike E. & Sonustun, Bahri, 2021. "Chaotic behavior in gold, silver, copper and bitcoin prices," Resources Policy, Elsevier, vol. 74(C).
    2. Liao, Shijun, 2013. "On the numerical simulation of propagation of micro-level inherent uncertainty for chaotic dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 47(C), pages 1-12.
    3. Litak, Grzegorz & Syta, Arkadiusz & Wiercigroch, Marian, 2009. "Identification of chaos in a cutting process by the 0–1 test," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2095-2101.
    4. Syta, Arkadiusz & Litak, Grzegorz, 2008. "Stochastic description of the deterministic Ricker’s population model," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 262-268.
    5. Diaz-Diaz, Fernando & Estrada, Ernesto, 2022. "Time and space generalized diffusion equation on graph/networks," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    6. Takahashi, Hiroshi & Tamura, Yozo, 2023. "Diffusion processes in Brownian environments on disconnected selfsimilar fractal sets in R," Statistics & Probability Letters, Elsevier, vol. 193(C).
    7. Saša Nježić & Jasna Radulović & Fatima Živić & Ana Mirić & Živana Jovanović Pešić & Mina Vasković Jovanović & Nenad Grujović, 2022. "Chaotic Model of Brownian Motion in Relation to Drug Delivery Systems Using Ferromagnetic Particles," Mathematics, MDPI, vol. 10(24), pages 1-19, December.
    8. Litak, G. & Syta, A. & Budhraja, M. & Saha, L.M., 2009. "Detection of the chaotic behaviour of a bouncing ball by the 0–1 test," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1511-1517.
    9. C. A. Tapia Cortez & J. Coulton & C. Sammut & S. Saydam, 2018. "Determining the chaotic behaviour of copper prices in the long-term using annual price data," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-13, December.
    10. Giacomo Ascione, 2020. "On the Construction of Some Deterministic and Stochastic Non-Local SIR Models," Mathematics, MDPI, vol. 8(12), pages 1-28, November.
    11. Ning Cui & Junhong Li, 2018. "Dynamic Analysis of a Particle Motion System," Mathematics, MDPI, vol. 7(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2503-:d:650723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.