IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v37y2008i1p262-268.html
   My bibliography  Save this article

Stochastic description of the deterministic Ricker’s population model

Author

Listed:
  • Syta, Arkadiusz
  • Litak, Grzegorz

Abstract

We adopt the ‘0–1’ test for chaos using Brownian motion chains to identify the dynamics of the Ricker’s population model. In the ‘0–1’ test ‘0’ is related to regular motion while ‘1’ is associated with chaotic motion. The identified regular and chaotic types of solutions have been confirmed by means of recurrence plots.

Suggested Citation

  • Syta, Arkadiusz & Litak, Grzegorz, 2008. "Stochastic description of the deterministic Ricker’s population model," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 262-268.
  • Handle: RePEc:eee:chsofr:v:37:y:2008:i:1:p:262-268
    DOI: 10.1016/j.chaos.2006.08.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906008630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.08.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Gaspard & M. E. Briggs & M. K. Francis & J. V. Sengers & R. W. Gammon & J. R. Dorfman & R. V. Calabrese, 1998. "Experimental evidence for microscopic chaos," Nature, Nature, vol. 394(6696), pages 865-868, August.
    2. Binder, P.-M. & Okamoto, Nicholas H., 2005. "Noisy integer maps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 51-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Litak, G. & Syta, A. & Budhraja, M. & Saha, L.M., 2009. "Detection of the chaotic behaviour of a bouncing ball by the 0–1 test," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1511-1517.
    2. Ding, Shun-Liang & Song, En-Zhe & Yang, Li-Ping & Litak, Grzegorz & Yao, Chong & Ma, Xiu-Zhen, 2016. "Investigation on nonlinear dynamic characteristics of combustion instability in the lean-burn premixed natural gas engine," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 99-110.
    3. Litak, Grzegorz & Syta, Arkadiusz & Wiercigroch, Marian, 2009. "Identification of chaos in a cutting process by the 0–1 test," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2095-2101.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Shijun, 2013. "On the numerical simulation of propagation of micro-level inherent uncertainty for chaotic dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 47(C), pages 1-12.
    2. Litak, G. & Syta, A. & Budhraja, M. & Saha, L.M., 2009. "Detection of the chaotic behaviour of a bouncing ball by the 0–1 test," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1511-1517.
    3. C. A. Tapia Cortez & J. Coulton & C. Sammut & S. Saydam, 2018. "Determining the chaotic behaviour of copper prices in the long-term using annual price data," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-13, December.
    4. Bildirici, Melike E. & Sonustun, Bahri, 2021. "Chaotic behavior in gold, silver, copper and bitcoin prices," Resources Policy, Elsevier, vol. 74(C).
    5. Litak, Grzegorz & Syta, Arkadiusz & Wiercigroch, Marian, 2009. "Identification of chaos in a cutting process by the 0–1 test," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2095-2101.
    6. Francisco Javier Martín-Pasquín & Alexander N. Pisarchik, 2021. "Brownian Behavior in Coupled Chaotic Oscillators," Mathematics, MDPI, vol. 9(19), pages 1-14, October.
    7. Saša Nježić & Jasna Radulović & Fatima Živić & Ana Mirić & Živana Jovanović Pešić & Mina Vasković Jovanović & Nenad Grujović, 2022. "Chaotic Model of Brownian Motion in Relation to Drug Delivery Systems Using Ferromagnetic Particles," Mathematics, MDPI, vol. 10(24), pages 1-19, December.
    8. Ning Cui & Junhong Li, 2018. "Dynamic Analysis of a Particle Motion System," Mathematics, MDPI, vol. 7(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:37:y:2008:i:1:p:262-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.