IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i14p1585-d589352.html
   My bibliography  Save this article

A New Approach to Modeling the Prediction of Movement Time

Author

Listed:
  • Chiuhsiang Joe Lin

    (Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106, Taiwan)

  • Chih-Feng Cheng

    (Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106, Taiwan)

Abstract

Fitts’ law predicts the human movement response time for a specific task through a simple linear formulation, in which the intercept and the slope are estimated from the task’s empirical data. This research was motivated by our pilot study, which found that the linear regression’s essential assumptions are not satisfied in the literature. Furthermore, the keystone hypothesis in Fitts’ law, namely that the movement time per response will be directly proportional to the minimum average amount of information per response demanded by the particular amplitude and target width, has never been formally tested. Therefore, in this study we developed an optional formulation by combining the findings from the fields of psychology, physics, and physiology to fulfill the statistical assumptions. An experiment was designed to test the hypothesis in Fitts’ law and to validate the proposed model. To conclude, our results indicated that movement time could be related to the index of difficulty at the same amplitude. The optional formulation accompanies the index of difficulty in Shannon form and performs the prediction better than the traditional model. Finally, a new approach to modeling movement time prediction was deduced from our research results.

Suggested Citation

  • Chiuhsiang Joe Lin & Chih-Feng Cheng, 2021. "A New Approach to Modeling the Prediction of Movement Time," Mathematics, MDPI, vol. 9(14), pages 1-26, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1585-:d:589352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/14/1585/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/14/1585/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    2. Christopher M. Harris & Daniel M. Wolpert, 1998. "Signal-dependent noise determines motor planning," Nature, Nature, vol. 394(6695), pages 780-784, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiuhsiang Joe Lin & Chih-Feng Cheng, 2022. "Modeling the Effect of Target Shape on Movement Performance in a 1D2D Fitts Task," Mathematics, MDPI, vol. 10(15), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahman, Shaikh Moksadur, 2020. "Relationship between Job Satisfaction and Turnover Intention: Evidence from Bangladesh," Asian Business Review, Asian Business Consortium, vol. 10(2), pages 99-108.
    2. Naveena Prakasam & Louisa Huxtable-Thomas, 2021. "Reddit: Affordances as an Enabler for Shifting Loyalties," Information Systems Frontiers, Springer, vol. 23(3), pages 723-751, June.
    3. Valeriy Makarov & Albert Bakhtizin, 2014. "The Estimation Of The Regions’ Efficiency Of The Russian Federation Including The Intellectual Capital, The Characteristics Of Readiness For Innovation, Level Of Well-Being, And Quality Of Life," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 9-30.
    4. Kristine Edgar Danielyan & Samvel Grigoriy Chailyan, 2019. "Delineation of Effectors Impact on The Human Brain Derived Phosphoribosylpyrophosphate Synthetase-1 Activity," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 24(1), pages 17918-17926, December.
    5. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    6. Shogo Yonekura & Yasuo Kuniyoshi, 2017. "Bodily motion fluctuation improves reaching success rate in a neurophysical agent via geometric-stochastic resonance," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-16, December.
    7. Sana Sadiq & Khadija Anasse & Najib Slimani, 2022. "The impact of mobile phones on high school students: connecting the research dots," Technium Social Sciences Journal, Technium Science, vol. 30(1), pages 252-270, April.
    8. Jascha-Alexander Koch & Michael Siering, 2019. "The recipe of successful crowdfunding campaigns," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(4), pages 661-679, December.
    9. Martins, José & Costa, Catarina & Oliveira, Tiago & Gonçalves, Ramiro & Branco, Frederico, 2019. "How smartphone advertising influences consumers' purchase intention," Journal of Business Research, Elsevier, vol. 94(C), pages 378-387.
    10. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    12. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    13. Bilgihan, Anil & Barreda, Albert & Okumus, Fevzi & Nusair, Khaldoon, 2016. "Consumer perception of knowledge-sharing in travel-related Online Social Networks," Tourism Management, Elsevier, vol. 52(C), pages 287-296.
    14. Géraldine Boué & Enda Cummins & Sandrine Guillou & Jean‐Philippe Antignac & Bruno Le Bizec & Jeanne‐Marie Membré, 2017. "Development and Application of a Probabilistic Risk–Benefit Assessment Model for Infant Feeding Integrating Microbiological, Nutritional, and Chemical Components," Risk Analysis, John Wiley & Sons, vol. 37(12), pages 2360-2388, December.
    15. Leila Tavakoli & Hamed Zamani & Falk Scholer & William Bruce Croft & Mark Sanderson, 2022. "Analyzing clarification in asynchronous information‐seeking conversations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(3), pages 449-471, March.
    16. Chiara Francalanci & Ajaz Hussain, 2016. "Discovering social influencers with network visualization: evidence from the tourism domain," Information Technology & Tourism, Springer, vol. 16(1), pages 103-125, March.
    17. Lutz, Christoph & Newlands, Gemma, 2018. "Consumer segmentation within the sharing economy: The case of Airbnb," Journal of Business Research, Elsevier, vol. 88(C), pages 187-196.
    18. van Weeghel, H.J.E. & Bos, A.P. & Jansen, M.H. & Ursinus, W.W. & Groot Koerkamp, P.W.G., 2021. "Good animal welfare by design: An approach to incorporate animal capacities in engineering design," Agricultural Systems, Elsevier, vol. 191(C).
    19. Cocoradă, Elena & Maican, Cătălin Ioan & Cazan, Ana-Maria & Maican, Maria Anca, 2018. "Assessing the smartphone addiction risk and its associations with personality traits among adolescents," Children and Youth Services Review, Elsevier, vol. 93(C), pages 345-354.
    20. Óscar Chiva-Bartoll & Honorato Morente-Oria & Francisco Tomás González-Fernández & Pedro Jesús Ruiz-Montero, 2020. "Anxiety and Bodily Pain in Older Women Participants in a Physical Education Program. A Multiple Moderated Mediation Analysis," Sustainability, MDPI, vol. 12(10), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1585-:d:589352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.