Error Estimations for Total Variation Type Regularization
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ding, Meng & Huang, Ting-Zhu & Wang, Si & Mei, Jin-Jin & Zhao, Xi-Le, 2019. "Total variation with overlapping group sparsity for deblurring images under Cauchy noise," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 128-147.
- Chenxi Chen & Yunmei Chen & Yuyuan Ouyang & Eduardo Pasiliao, 2018. "Stochastic Accelerated Alternating Direction Method of Multipliers with Importance Sampling," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 676-695, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ding, Meng & Huang, Ting-Zhu & Ma, Tian-Hui & Zhao, Xi-Le & Yang, Jing-Hua, 2020. "Cauchy noise removal using group-based low-rank prior," Applied Mathematics and Computation, Elsevier, vol. 372(C).
- Kai Tu & Haibin Zhang & Huan Gao & Junkai Feng, 2020. "A hybrid Bregman alternating direction method of multipliers for the linearly constrained difference-of-convex problems," Journal of Global Optimization, Springer, vol. 76(4), pages 665-693, April.
- Iqbal, Azhar & Ahmad, Shahbaz & Kim, Junseok, 2025. "Two-Level method for blind image deblurring problems," Applied Mathematics and Computation, Elsevier, vol. 485(C).
- Jameel Ahmed Bhutto & Asad Khan & Ziaur Rahman, 2023. "Image Restoration with Fractional-Order Total Variation Regularization and Group Sparsity," Mathematics, MDPI, vol. 11(15), pages 1-23, July.
- Yang, Jing-Hua & Zhao, Xi-Le & Ji, Teng-Yu & Ma, Tian-Hui & Huang, Ting-Zhu, 2020. "Low-rank tensor train for tensor robust principal component analysis," Applied Mathematics and Computation, Elsevier, vol. 367(C).
- Liu, Jingjing & Ma, Ruijie & Zeng, Xiaoyang & Liu, Wanquan & Wang, Mingyu & Chen, Hui, 2021. "An efficient non-convex total variation approach for image deblurring and denoising," Applied Mathematics and Computation, Elsevier, vol. 397(C).
- Chih-Sheng Chuang & Hongjin He & Zhiyuan Zhang, 2022. "A unified Douglas–Rachford algorithm for generalized DC programming," Journal of Global Optimization, Springer, vol. 82(2), pages 331-349, February.
More about this item
Keywords
total variation; regularization; inverse problem;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1373-:d:574477. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.