IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i7p1141-d383667.html
   My bibliography  Save this article

Tube-Based Taut String Algorithms for Total Variation Regularization

Author

Listed:
  • Artyom Makovetskii

    (Department of Mathematics, Chelyabinsk State University, Chelyabinsk 454001, Russia)

  • Sergei Voronin

    (Department of Mathematics, Chelyabinsk State University, Chelyabinsk 454001, Russia)

  • Vitaly Kober

    (Department of Mathematics, Chelyabinsk State University, Chelyabinsk 454001, Russia
    Ensenada Center for Scientific Research and Higher Education (CICESE), Ensenada 22860, Mexico
    Institute for Information Transmission Problems, Russain Academy of Sciences, Moscow 127051, Russia)

  • Aleksei Voronin

    (Department of Mathematics, Chelyabinsk State University, Chelyabinsk 454001, Russia)

Abstract

Removing noise from signals using total variation regularization is a challenging signal processing problem arising in many practical applications. The taut string method is one of the most efficient approaches for solving the 1D TV regularization problem. In this paper we propose a geometric description of the linearized taut string method. This geometric description leads to the notion of the “tube”. We propose three tube-based taut string algorithms for total variation regularization. Different weight functionals can be used in the 1D TV regularization that lead to different types of tubes. We consider uniform, vertically nonuniform, vertically and horizontally nonuniform tubes. The proposed geometric approach is used to speed-up TV regularization processing by dividing the tubes into subtubes and using parallel processing. We introduce the concept of a relatively convex tube and describe the relationship between the geometric characteristics of tubes and exact solutions to the TV regularization. The properties of exact solutions can also be used to design efficient algorithms for solving the TV regularization problem. The performance of the proposed algorithms is discussed and illustrated by computer simulation.

Suggested Citation

  • Artyom Makovetskii & Sergei Voronin & Vitaly Kober & Aleksei Voronin, 2020. "Tube-Based Taut String Algorithms for Total Variation Regularization," Mathematics, MDPI, vol. 8(7), pages 1-20, July.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1141-:d:383667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/7/1141/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/7/1141/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stevanovic Dalibor, 2016. "Common time variation of parameters in reduced-form macroeconomic models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 159-183, April.
    2. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    3. A. Fadlelmawla & M. Al-Otaibi, 2005. "Analysis of the Water Resources Status in Kuwait," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 555-570, October.
    4. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    5. Duan, Jinyun & Li, Chenwei & Xu, Yue & Wu, Chia-Huei, 2017. "Transformational leadership and employee voice behavior: a Pygmalion mechanism," LSE Research Online Documents on Economics 68035, London School of Economics and Political Science, LSE Library.
    6. Hota, Monali & Bartsch, Fabian, 2019. "Consumer socialization in childhood and adolescence: Impact of psychological development and family structure," Journal of Business Research, Elsevier, vol. 105(C), pages 11-20.
    7. Abernethy, Margaret A. & Vagnoni, Emidia, 2004. "Power, organization design and managerial behaviour," Accounting, Organizations and Society, Elsevier, vol. 29(3-4), pages 207-225.
    8. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    9. Peter Burnell, 2008. "From Evaluating Democracy Assistance to Appraising Democracy Promotion," Political Studies, Political Studies Association, vol. 56(2), pages 414-434, June.
    10. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    11. Mammassis, Constantinos S. & Kostopoulos, Konstantinos C., 2019. "CEO goal orientations, environmental dynamism and organizational ambidexterity: An investigation in SMEs," European Management Journal, Elsevier, vol. 37(5), pages 577-588.
    12. Minghe Sun, 2005. "Warm-Start Routines for Solving Augmented Weighted Tchebycheff Network Programs in Multiple-Objective Network Programming," INFORMS Journal on Computing, INFORMS, vol. 17(4), pages 422-437, November.
    13. Viren Swami & Phik-Wern Loo & Adrian Furnham, 2010. "Public Knowledge and Beliefs About Depression Among Urban and Rural Malays in Malaysia," International Journal of Social Psychiatry, , vol. 56(5), pages 480-496, September.
    14. Jugend, Daniel & da Silva, Sérgio Luis & Salgado, Manoel Henrique & Miguel, Paulo Augusto Cauchick, 2016. "Product portfolio management and performance: Evidence from a survey of innovative Brazilian companies," Journal of Business Research, Elsevier, vol. 69(11), pages 5095-5100.
    15. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    16. Mínguez, R. & García-Bertrand, R., 2016. "Robust transmission network expansion planning in energy systems: Improving computational performance," European Journal of Operational Research, Elsevier, vol. 248(1), pages 21-32.
    17. Jenny Carolina Saldana Cortés, 2011. "Programación semidefinida aplicada a problemas de cantidad económica de pedido," Documentos CEDE 8735, Universidad de los Andes, Facultad de Economía, CEDE.
    18. Ian Maitland & Mitsuhiro Umezu, 2006. "An Evaluation of Japan's Stakeholder Capitalism," Journal of Private Enterprise, The Association of Private Enterprise Education, vol. 22(Spring 20), pages 131-164.
    19. Mikhail A. Sokolovskiy & Xavier J. Carton & Boris N. Filyushkin, 2020. "Mathematical Modeling of Vortex Interaction Using a Three-Layer Quasigeostrophic Model. Part 1: Point-Vortex Approach," Mathematics, MDPI, vol. 8(8), pages 1-13, July.
    20. Craig Loschmann & Özge Bilgili & Melissa Siegel, 2019. "Considering the benefits of hosting refugees: evidence of refugee camps influencing local labour market activity and economic welfare in Rwanda," IZA Journal of Migration and Development, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 9(1), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1141-:d:383667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.