IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i7p1091-d379940.html
   My bibliography  Save this article

On Derivative Free Multiple-Root Finders with Optimal Fourth Order Convergence

Author

Listed:
  • Janak Raj Sharma

    (Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal Sangrur 148106, India)

  • Sunil Kumar

    (Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal Sangrur 148106, India)

  • Lorentz Jäntschi

    (Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
    Institute of Doctoral Studies, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania)

Abstract

A number of optimal order multiple root techniques that require derivative evaluations in the formulas have been proposed in literature. However, derivative-free optimal techniques for multiple roots are seldom obtained. By considering this factor as motivational, here we present a class of optimal fourth order methods for computing multiple roots without using derivatives in the iteration. The iterative formula consists of two steps in which the first step is a well-known Traub–Steffensen scheme whereas second step is a Traub–Steffensen-like scheme. The Methodology is based on two steps of which the first is Traub–Steffensen iteration and the second is Traub–Steffensen-like iteration. Effectiveness is validated on different problems that shows the robust convergent behavior of the proposed methods. It has been proven that the new derivative-free methods are good competitors to their existing counterparts that need derivative information.

Suggested Citation

  • Janak Raj Sharma & Sunil Kumar & Lorentz Jäntschi, 2020. "On Derivative Free Multiple-Root Finders with Optimal Fourth Order Convergence," Mathematics, MDPI, vol. 8(7), pages 1-15, July.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1091-:d:379940
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/7/1091/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/7/1091/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2015. "A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 387-400.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Ćalasan & Mujahed Al-Dhaifallah & Ziad M. Ali & Shady H. E. Abdel Aleem, 2022. "Comparative Analysis of Different Iterative Methods for Solving Current–Voltage Characteristics of Double and Triple Diode Models of Solar Cells," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    2. Ramandeep Behl, 2022. "A Derivative Free Fourth-Order Optimal Scheme for Applied Science Problems," Mathematics, MDPI, vol. 10(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G Thangkhenpau & Sunil Panday & Shubham Kumar Mittal & Lorentz Jäntschi, 2023. "Novel Parametric Families of with and without Memory Iterative Methods for Multiple Roots of Nonlinear Equations," Mathematics, MDPI, vol. 11(9), pages 1-18, April.
    2. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2016. "A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 120-140.
    3. Fiza Zafar & Alicia Cordero & Juan R. Torregrosa, 2018. "An Efficient Family of Optimal Eighth-Order Multiple Root Finders," Mathematics, MDPI, vol. 6(12), pages 1-16, December.
    4. Saima Akram & Fiza Zafar & Nusrat Yasmin, 2019. "An Optimal Eighth-Order Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(8), pages 1-14, July.
    5. Himani Arora & Alicia Cordero & Juan R. Torregrosa & Ramandeep Behl & Sattam Alharbi, 2022. "Derivative-Free Iterative Schemes for Multiple Roots of Nonlinear Functions," Mathematics, MDPI, vol. 10(9), pages 1-13, May.
    6. Min-Young Lee & Young Ik Kim & Beny Neta, 2019. "A Generic Family of Optimal Sixteenth-Order Multiple-Root Finders and Their Dynamics Underlying Purely Imaginary Extraneous Fixed Points," Mathematics, MDPI, vol. 7(6), pages 1-26, June.
    7. Ramandeep Behl & Ioannis K. Argyros & Michael Argyros & Mehdi Salimi & Arwa Jeza Alsolami, 2020. "An Iteration Function Having Optimal Eighth-Order of Convergence for Multiple Roots and Local Convergence," Mathematics, MDPI, vol. 8(9), pages 1-21, August.
    8. Young Hee Geum & Young Ik Kim & Beny Neta, 2018. "Developing an Optimal Class of Generic Sixteenth-Order Simple-Root Finders and Investigating Their Dynamics," Mathematics, MDPI, vol. 7(1), pages 1-32, December.
    9. Sharma, Janak Raj & Kumar, Sunil, 2021. "An excellent numerical technique for multiple roots," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 316-324.
    10. Deepak Kumar & Janak Raj Sharma & Clemente Cesarano, 2019. "One-Point Optimal Family of Multiple Root Solvers of Second-Order," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
    11. Deepak Kumar & Janak Raj Sharma & Ioannis K. Argyros, 2020. "Optimal One-Point Iterative Function Free from Derivatives for Multiple Roots," Mathematics, MDPI, vol. 8(5), pages 1-14, May.
    12. Ramandeep Behl & Eulalia Martínez & Fabricio Cevallos & Diego Alarcón, 2019. "A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(4), pages 1-12, April.
    13. Munish Kansal & Ali Saleh Alshomrani & Sonia Bhalla & Ramandeep Behl & Mehdi Salimi, 2020. "One Parameter Optimal Derivative-Free Family to Find the Multiple Roots of Algebraic Nonlinear Equations," Mathematics, MDPI, vol. 8(12), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1091-:d:379940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.