IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v182y2021icp316-324.html
   My bibliography  Save this article

An excellent numerical technique for multiple roots

Author

Listed:
  • Sharma, Janak Raj
  • Kumar, Sunil

Abstract

In recent times, some optimal eighth order iterative methods for computing multiple zeros of nonlinear functions have been appeared in literature. Different from these existing optimal methods, here we propose a new eighth order iterative method for multiple zeros. With four evaluations per iteration, the method satisfies the criterion of attaining optimal convergence of eighth order. Accuracy and computational efficiency are demonstrated by implementing the algorithm on different numerical problems. Moreover, the obtained results show its good convergence compared to existing optimal eighth order techniques. Besides, it also challenges the accuracy of existing methods which is the main advantage.

Suggested Citation

  • Sharma, Janak Raj & Kumar, Sunil, 2021. "An excellent numerical technique for multiple roots," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 316-324.
  • Handle: RePEc:eee:matcom:v:182:y:2021:i:c:p:316-324
    DOI: 10.1016/j.matcom.2020.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542030402X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.11.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2015. "A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 387-400.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fiza Zafar & Alicia Cordero & Juan R. Torregrosa, 2018. "An Efficient Family of Optimal Eighth-Order Multiple Root Finders," Mathematics, MDPI, vol. 6(12), pages 1-16, December.
    2. Saima Akram & Fiza Zafar & Nusrat Yasmin, 2019. "An Optimal Eighth-Order Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(8), pages 1-14, July.
    3. Ramandeep Behl & Ioannis K. Argyros & Michael Argyros & Mehdi Salimi & Arwa Jeza Alsolami, 2020. "An Iteration Function Having Optimal Eighth-Order of Convergence for Multiple Roots and Local Convergence," Mathematics, MDPI, vol. 8(9), pages 1-21, August.
    4. Deepak Kumar & Janak Raj Sharma & Clemente Cesarano, 2019. "One-Point Optimal Family of Multiple Root Solvers of Second-Order," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
    5. Deepak Kumar & Janak Raj Sharma & Ioannis K. Argyros, 2020. "Optimal One-Point Iterative Function Free from Derivatives for Multiple Roots," Mathematics, MDPI, vol. 8(5), pages 1-14, May.
    6. Ramandeep Behl & Eulalia Martínez & Fabricio Cevallos & Diego Alarcón, 2019. "A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(4), pages 1-12, April.
    7. Munish Kansal & Ali Saleh Alshomrani & Sonia Bhalla & Ramandeep Behl & Mehdi Salimi, 2020. "One Parameter Optimal Derivative-Free Family to Find the Multiple Roots of Algebraic Nonlinear Equations," Mathematics, MDPI, vol. 8(12), pages 1-15, December.
    8. G Thangkhenpau & Sunil Panday & Shubham Kumar Mittal & Lorentz Jäntschi, 2023. "Novel Parametric Families of with and without Memory Iterative Methods for Multiple Roots of Nonlinear Equations," Mathematics, MDPI, vol. 11(9), pages 1-18, April.
    9. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2016. "A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 120-140.
    10. Janak Raj Sharma & Sunil Kumar & Lorentz Jäntschi, 2020. "On Derivative Free Multiple-Root Finders with Optimal Fourth Order Convergence," Mathematics, MDPI, vol. 8(7), pages 1-15, July.
    11. Himani Arora & Alicia Cordero & Juan R. Torregrosa & Ramandeep Behl & Sattam Alharbi, 2022. "Derivative-Free Iterative Schemes for Multiple Roots of Nonlinear Functions," Mathematics, MDPI, vol. 10(9), pages 1-13, May.
    12. Min-Young Lee & Young Ik Kim & Beny Neta, 2019. "A Generic Family of Optimal Sixteenth-Order Multiple-Root Finders and Their Dynamics Underlying Purely Imaginary Extraneous Fixed Points," Mathematics, MDPI, vol. 7(6), pages 1-26, June.
    13. Young Hee Geum & Young Ik Kim & Beny Neta, 2018. "Developing an Optimal Class of Generic Sixteenth-Order Simple-Root Finders and Investigating Their Dynamics," Mathematics, MDPI, vol. 7(1), pages 1-32, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:182:y:2021:i:c:p:316-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.