IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p531-d341275.html
   My bibliography  Save this article

Asymptotic Diffusion Analysis of Multi-Server Retrial Queue with Hyper-Exponential Service

Author

Listed:
  • Alexander Moiseev

    (Institute of Applied Mathematics and Computer Science, Tomsk State University, Tomsk 634050, Russia)

  • Anatoly Nazarov

    (Institute of Applied Mathematics and Computer Science, Tomsk State University, Tomsk 634050, Russia)

  • Svetlana Paul

    (Institute of Applied Mathematics and Computer Science, Tomsk State University, Tomsk 634050, Russia)

Abstract

A multi-server retrial queue with a hyper-exponential service time is considered in this paper. The study is performed by the method of asymptotic diffusion analysis under the condition of long delay in orbit. On the basis of the constructed diffusion process, we obtain approximations of stationary probability distributions of the number of customers in orbit and the number of busy servers. Using simulations and numerical analysis, we estimate the accuracy and applicability area of the obtained approximations.

Suggested Citation

  • Alexander Moiseev & Anatoly Nazarov & Svetlana Paul, 2020. "Asymptotic Diffusion Analysis of Multi-Server Retrial Queue with Hyper-Exponential Service," Mathematics, MDPI, vol. 8(4), pages 1-16, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:531-:d:341275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/531/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/531/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Che Kim & Vilena Mushko & Alexander Dudin, 2012. "Computation of the steady state distribution for multi-server retrial queues with phase type service process," Annals of Operations Research, Springer, vol. 201(1), pages 307-323, December.
    2. Tuan Phung-Duc & Hiroyuki Masuyama & Shoji Kasahara & Yutaka Takahashi, 2013. "A matrix continued fraction approach to multiserver retrial queues," Annals of Operations Research, Springer, vol. 202(1), pages 161-183, January.
    3. J.R. Artalejo & M. Pozo, 2002. "Numerical Calculation of the Stationary Distribution of the Main Multiserver Retrial Queue," Annals of Operations Research, Springer, vol. 116(1), pages 41-56, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samira Taleb & Amar Aissani, 2016. "Preventive maintenance in an unreliable M/G/1 retrial queue with persistent and impatient customers," Annals of Operations Research, Springer, vol. 247(1), pages 291-317, December.
    2. Shin, Yang Woo, 2015. "Algorithmic approach to Markovian multi-server retrial queues with vacations," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 287-297.
    3. K. R. Rejitha & K. P. Jose, 2018. "A stochastic inventory system with two modes of service and retrial of customers," OPSEARCH, Springer;Operational Research Society of India, vol. 55(1), pages 134-149, March.
    4. Jeongsim Kim & Bara Kim, 2016. "A survey of retrial queueing systems," Annals of Operations Research, Springer, vol. 247(1), pages 3-36, December.
    5. Vyacheslav Abramov, 2006. "Analysis of multiserver retrial queueing system: A martingale approach and an algorithm of solution," Annals of Operations Research, Springer, vol. 141(1), pages 19-50, January.
    6. Sergei A. Dudin & Olga S. Dudina & Olga I. Kostyukova, 2023. "Analysis of a Queuing System with Possibility of Waiting Customers Jockeying between Two Groups of Servers," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    7. Nesrine Zidani & Natalia Djellab, 2024. "Asymptotic upper bounds for an M/M/C/K retrial queue with a guard channel and guard buffer," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 99(3), pages 365-407, June.
    8. Ding, S. & Koole, G. & van der Mei, R.D., 2015. "On the estimation of the true demand in call centers with redials and reconnects," European Journal of Operational Research, Elsevier, vol. 246(1), pages 250-262.
    9. Dudin, A.N. & Dudin, S.A. & Dudina, O.S. & Samouylov, K.E., 2018. "Analysis of queueing model with processor sharing discipline and customers impatience," Operations Research Perspectives, Elsevier, vol. 5(C), pages 245-255.
    10. Lyes Ikhlef & Ouiza Lekadir & Djamil Aïssani, 2016. "MRSPN analysis of Semi-Markovian finite source retrial queues," Annals of Operations Research, Springer, vol. 247(1), pages 141-167, December.
    11. Artalejo, Jesus R. & Economou, Antonis & Gómez-Corral, Antonio, 2008. "Algorithmic analysis of the Geo/Geo/c retrial queue," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1042-1056, September.
    12. Jesus R. Artalejo & A. Gómez‐Corral, 2007. "Waiting time analysis of the M/G/1 queue with finite retrial group," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(5), pages 524-529, August.
    13. Artalejo, J.R. & Economou, A. & Lopez-Herrero, M.J., 2007. "Algorithmic approximations for the busy period distribution of the M/M/c retrial queue," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1687-1702, February.
    14. Alexander Dudin & Chesoong Kim & Olga Dudina & Sergey Dudin, 2016. "Multi-server queueing system with a generalized phase-type service time distribution as a model of call center with a call-back option," Annals of Operations Research, Springer, vol. 239(2), pages 401-428, April.
    15. Wanlu Gu & Neng Fan & Haitao Liao, 2019. "Evaluating readmission rates and discharge planning by analyzing the length-of-stay of patients," Annals of Operations Research, Springer, vol. 276(1), pages 89-108, May.
    16. Tuan Phung-Duc & Hiroyuki Masuyama & Shoji Kasahara & Yutaka Takahashi, 2013. "A matrix continued fraction approach to multiserver retrial queues," Annals of Operations Research, Springer, vol. 202(1), pages 161-183, January.
    17. Sofiane Ouazine & Karim Abbas, 2016. "A functional approximation for retrial queues with two way communication," Annals of Operations Research, Springer, vol. 247(1), pages 211-227, December.
    18. Economou, Antonis & Kapodistria, Stella, 2010. "Synchronized abandonments in a single server unreliable queue," European Journal of Operational Research, Elsevier, vol. 203(1), pages 143-155, May.
    19. Alexander N. Dudin & Sergey A. Dudin & Valentina I. Klimenok & Olga S. Dudina, 2024. "Stability of Queueing Systems with Impatience, Balking and Non-Persistence of Customers," Mathematics, MDPI, vol. 12(14), pages 1-17, July.
    20. Qi-Ming He & Attahiru Sule Alfa, 2018. "Space Reduction for a Class of Multidimensional Markov Chains: A Summary and Some Applications," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 1-10, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:531-:d:341275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.