IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p508-d340650.html
   My bibliography  Save this article

Fractional Partial Differential Equations Associated with L ê vy Stable Process

Author

Listed:
  • Reem Abdullah Aljedhi

    (Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia)

  • Adem Kılıçman

    (Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia)

Abstract

In this study, we first present a time-fractional L e ^ vy diffusion equation of the exponential option pricing models of European option pricing and the risk-neutral parameter. Then, we modify a particular L e ^ vy-time fractional diffusion equation of European-style options. Further, we introduce a more general model based on the L e ^ vy-time fractional diffusion equation and review some recent findings associated with risk-neutral free European option pricing.

Suggested Citation

  • Reem Abdullah Aljedhi & Adem Kılıçman, 2020. "Fractional Partial Differential Equations Associated with L ê vy Stable Process," Mathematics, MDPI, vol. 8(4), pages 1-7, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:508-:d:340650
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rama Cont & Ekaterina Voltchkova, 2005. "A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models," Post-Print halshs-00445645, HAL.
    2. Cartea, Álvaro & del-Castillo-Negrete, Diego, 2007. "Fractional diffusion models of option prices in markets with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 749-763.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanda Chen & Zailei Cheng & Haixu Wang, 2023. "Option Pricing for the Variance Gamma Model: A New Perspective," Papers 2306.10659, arXiv.org.
    2. Weilong Fu & Ali Hirsa, 2019. "A fast method for pricing American options under the variance gamma model," Papers 1903.07519, arXiv.org.
    3. Lukas Gonon & Christoph Schwab, 2021. "Deep ReLU network expression rates for option prices in high-dimensional, exponential Lévy models," Finance and Stochastics, Springer, vol. 25(4), pages 615-657, October.
    4. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    5. Ron Tat Lung Chan, 2016. "Adaptive Radial Basis Function Methods for Pricing Options Under Jump-Diffusion Models," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 623-643, April.
    6. Hao Zhou & Duy-Minh Dang, 2024. "Numerical analysis of American option pricing in a two-asset jump-diffusion model," Papers 2410.04745, arXiv.org, revised Oct 2024.
    7. Yi-Long Hsiao & Chien-Jung Ting, 2022. "Pricing Rent-to-Own Options with a Barrier Level: Taking Housing Contracts as an Example," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(5), pages 1-3.
    8. Saberi Zafarghandi, Fahimeh & Mohammadi, Maryam & Babolian, Esmail & Javadi, Shahnam, 2019. "Radial basis functions method for solving the fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 224-246.
    9. Karel in 't Hout & Pieter Lamotte, 2022. "Efficient numerical valuation of European options under the two-asset Kou jump-diffusion model," Papers 2207.10060, arXiv.org, revised May 2023.
    10. G. Fern'andez-Anaya & L. A. Quezada-T'ellez & B. Nu~nez-Zavala & D. Brun-Battistini, 2019. "Katugampola Generalized Conformal Derivative Approach to Inada Conditions and Solow-Swan Economic Growth Model," Papers 1907.00130, arXiv.org.
    11. Kyriakos Georgiou & Athanasios N. Yannacopoulos, 2023. "Probability of Default modelling with L\'evy-driven Ornstein-Uhlenbeck processes and applications in credit risk under the IFRS 9," Papers 2309.12384, arXiv.org.
    12. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    13. Wenting Chen & Kai Du & Xinzi Qiu, 2017. "Analytic properties of American option prices under a modified Black-Scholes equation with spatial fractional derivatives," Papers 1701.01515, arXiv.org.
    14. Moustapha Pemy, 2018. "Explicit Solutions for Optimal Resource Extraction Problems under Regime Switching L\'evy Models," Papers 1806.06105, arXiv.org.
    15. Erhan Bayraktar & Hao Xing, 2009. "Pricing American options for jump diffusions by iterating optimal stopping problems for diffusions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(3), pages 505-525, December.
    16. Xu, Guoping & Zheng, Harry, 2010. "Basket options valuation for a local volatility jump-diffusion model with the asymptotic expansion method," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 415-422, December.
    17. Cl'ement M'enass'e & Peter Tankov, 2015. "Asymptotic indifference pricing in exponential L\'evy models," Papers 1502.03359, arXiv.org, revised Feb 2015.
    18. Ron Chan & Simon Hubbert, 2014. "Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme," Review of Derivatives Research, Springer, vol. 17(2), pages 161-189, July.
    19. Genin, Adrien & Tankov, Peter, 2020. "Optimal importance sampling for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 20-46.
    20. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:508-:d:340650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.