IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v11y2022i1p1-d1008541.html
   My bibliography  Save this article

Recursive Approaches for Multi-Layer Dividend Strategies in a Phase-Type Renewal Risk Model

Author

Listed:
  • Apostolos D. Papaioannou

    (Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
    These authors contributed equally to this work.)

  • Lewis Ramsden

    (School for Business and Society, University of York, York YO10 5DD, UK
    These authors contributed equally to this work.)

Abstract

In this paper we consider a risk model with two independent classes of insurance risks in the presence of a multi-layer dividend strategy. We assume that both of the claim number processes are renewal processes with phase-type inter-arrival times. By analysing the Markov chains associated with the two given phase-type distributions of the inter-arrival times, algorithmic schemes for the determination of explicit expressions for the Gerber–Shiu expected discounted penalty function, as well as the expected discounted dividend payments are derived, using two different approaches.

Suggested Citation

  • Apostolos D. Papaioannou & Lewis Ramsden, 2022. "Recursive Approaches for Multi-Layer Dividend Strategies in a Phase-Type Renewal Risk Model," Risks, MDPI, vol. 11(1), pages 1-21, December.
  • Handle: RePEc:gam:jrisks:v:11:y:2022:i:1:p:1-:d:1008541
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/11/1/1/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/11/1/1/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, X. Sheldon & Sendova, Kristina P., 2008. "The compound Poisson risk model with multiple thresholds," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 617-627, April.
    2. Andrei Badescu & David Landriault, 2008. "Recursive Calculation of the Dividend Moments in a Multi-threshold Risk Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 12(1), pages 74-88.
    3. Lin, X.Sheldon & Pavlova, Kristina P., 2006. "The compound Poisson risk model with a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 57-80, February.
    4. Yang, Hu & Zhang, Zhimin, 2008. "Gerber-Shiu discounted penalty function in a Sparre Andersen model with multi-layer dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 984-991, June.
    5. Andrei Badescu, 2008. "“The Discounted Joint Distribution of the Surplus Prior to Ruin and the Deficit at Ruin in a Sparre Andersen Model,” Jiandong Ren, July 2007," North American Actuarial Journal, Taylor & Francis Journals, vol. 12(2), pages 210-212.
    6. Jing Xiao, 2007. "From the editor," Journal of Family and Economic Issues, Springer, vol. 28(1), pages 1-2, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olena Ragulina & Jonas Šiaulys, 2020. "Upper Bounds and Explicit Formulas for the Ruin Probability in the Risk Model with Stochastic Premiums and a Multi-Layer Dividend Strategy," Mathematics, MDPI, vol. 8(11), pages 1-35, October.
    2. Yang, Hu & Zhang, Zhimin, 2009. "The perturbed compound Poisson risk model with multi-layer dividend strategy," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 70-78, January.
    3. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    4. Jiang, Wuyuan & Yang, Zhaojun & Li, Xinping, 2012. "The discounted penalty function with multi-layer dividend strategy in the phase-type risk model," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1358-1366.
    5. Lu, Yi & Li, Shuanming, 2009. "The Markovian regime-switching risk model with a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 296-303, April.
    6. Deng, Chao & Zhou, Jieming & Deng, Yingchun, 2012. "The Gerber–Shiu discounted penalty function in a delayed renewal risk model with multi-layer dividend strategy," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1648-1656.
    7. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    8. Yang, Hu & Zhang, Zhimin, 2008. "Gerber-Shiu discounted penalty function in a Sparre Andersen model with multi-layer dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 984-991, June.
    9. Cheung, Eric C.K., 2011. "A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 384-397, May.
    10. Li, Shu & Landriault, David & Lemieux, Christiane, 2015. "A risk model with varying premiums: Its risk management implications," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 38-46.
    11. Liu, Xiangdong & Xiong, Jie & Zhang, Shuaiqi, 2015. "The Gerber–Shiu discounted penalty function in the classical risk model with impulsive dividend policy," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 183-190.
    12. Eric C. K. Cheung & David Landriault, 2012. "On a Risk Model with Surplus-dependent Premium and Tax Rates," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 233-251, June.
    13. Zhou, Zhongbao & Xiao, Helu & Deng, Yingchun, 2015. "Markov-dependent risk model with multi-layer dividend strategy," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 273-286.
    14. Shi, Yafeng & Liu, Peng & Zhang, Chunsheng, 2013. "On the compound Poisson risk model with dependence and a threshold dividend strategy," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 1998-2006.
    15. Mitric, Ilie-Radu & Sendova, Kristina P. & Tsai, Cary Chi-Liang, 2010. "On a multi-threshold compound Poisson process perturbed by diffusion," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 366-375, March.
    16. Hélène Cossette & Etienne Marceau & Fouad Marri, 2011. "Constant Dividend Barrier in a Risk Model with a Generalized Farlie-Gumbel-Morgenstern Copula," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 487-510, September.
    17. Brill, Percy H. & Yu, Kaiqi, 2011. "Analysis of risk models using a level crossing technique," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 298-309.
    18. Wuyuan Jiang & Zhaojun Yang, 2014. "The expected discounted penalty function for two classes of risk processes perturbed by diffusion with multiple thresholds," Indian Journal of Pure and Applied Mathematics, Springer, vol. 45(4), pages 479-495, August.
    19. Zan Yu & Lianzeng Zhang, 2024. "Computing the Gerber-Shiu function with interest and a constant dividend barrier by physics-informed neural networks," Papers 2401.04378, arXiv.org.
    20. Zhang, Aili & Li, Shuanming & Wang, Wenyuan, 2023. "A scale function based approach for solving integral-differential equations in insurance risk models," Applied Mathematics and Computation, Elsevier, vol. 450(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:11:y:2022:i:1:p:1-:d:1008541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.