IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p1862-d434026.html
   My bibliography  Save this article

Transitivity in Fuzzy Hyperspaces

Author

Listed:
  • Daniel Jardón

    (Academia de Matemáticas, Universidad Autónoma de la Ciudad de México, Calz. Ermita Iztapalapa S/N, Col. Lomas de Zaragoza 09620, México D.F., Mexico)

  • Iván Sánchez

    (Departamento de Matemáticas, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, Mexico City C.P. 09340, Mexico)

  • Manuel Sanchis

    (Institut de Matemàtiques i Aplicacions de Castelló (IMAC), Universitat Jaume I, Av. Vicent Sos Baynat s/n, C.P. 12071 Castelló de la Plana, Spain)

Abstract

Given a metric space ( X , d ) , we deal with a classical problem in the theory of hyperspaces: how some important dynamical properties (namely, weakly mixing, transitivity and point-transitivity) between a discrete dynamical system f : ( X , d ) → ( X , d ) and its natural extension to the hyperspace are related. In this context, we consider the Zadeh’s extension f ^ of f to F ( X ) , the family of all normal fuzzy sets on X , i.e., the hyperspace F ( X ) of all upper semicontinuous fuzzy sets on X with compact supports and non-empty levels and we endow F ( X ) with different metrics: the supremum metric d ∞ , the Skorokhod metric d 0 , the sendograph metric d S and the endograph metric d E . Among other things, the following results are presented: (1) If ( X , d ) is a metric space, then the following conditions are equivalent: (a) ( X , f ) is weakly mixing, (b) ( ( F ( X ) , d ∞ ) , f ^ ) is transitive, (c) ( ( F ( X ) , d 0 ) , f ^ ) is transitive and (d) ( ( F ( X ) , d S ) ) , f ^ ) is transitive, (2) if f : ( X , d ) → ( X , d ) is a continuous function, then the following hold: (a) if ( ( F ( X ) , d S ) , f ^ ) is transitive, then ( ( F ( X ) , d E ) , f ^ ) is transitive, (b) if ( ( F ( X ) , d S ) , f ^ ) is transitive, then ( X , f ) is transitive; and (3) if ( X , d ) be a complete metric space, then the following conditions are equivalent: (a) ( X × X , f × f ) is point-transitive and (b) ( ( F ( X ) , d 0 ) is point-transitive.

Suggested Citation

  • Daniel Jardón & Iván Sánchez & Manuel Sanchis, 2020. "Transitivity in Fuzzy Hyperspaces," Mathematics, MDPI, vol. 8(11), pages 1-9, October.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1862-:d:434026
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/1862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/1862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sánchez, Iván & Sanchis, Manuel & Villanueva, Hugo, 2017. "Chaos in hyperspaces of nonautonomous discrete systems," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 68-74.
    2. Peris, Alfredo, 2005. "Set-valued discrete chaos," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 19-23.
    3. Banks, John, 2005. "Chaos for induced hyperspace maps," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 681-685.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiří Kupka & Nicole Škorupová, 2021. "On PSO-Based Simulations of Fuzzy Dynamical Systems Induced by One-Dimensional Ones," Mathematics, MDPI, vol. 9(21), pages 1-26, October.
    2. Félix Martínez-Giménez & Alfred Peris & Francisco Rodenas, 2021. "Chaos on Fuzzy Dynamical Systems," Mathematics, MDPI, vol. 9(20), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cánovas Peña, Jose S. & López, Gabriel Soler, 2006. "Topological entropy for induced hyperspace maps," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 979-982.
    2. Fu, Heman & Xing, Zhitao, 2012. "Mixing properties of set-valued maps on hyperspaces via Furstenberg families," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 439-443.
    3. Félix Martínez-Giménez & Alfred Peris & Francisco Rodenas, 2021. "Chaos on Fuzzy Dynamical Systems," Mathematics, MDPI, vol. 9(20), pages 1-11, October.
    4. Sánchez, Iván & Sanchis, Manuel & Villanueva, Hugo, 2017. "Chaos in hyperspaces of nonautonomous discrete systems," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 68-74.
    5. Kwietniak, Dominik & Oprocha, Piotr, 2007. "Topological entropy and chaos for maps induced on hyperspaces," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 76-86.
    6. Wang, Yangeng & Wei, Guo & Campbell, William H. & Bourquin, Steven, 2009. "A framework of induced hyperspace dynamical systems equipped with the hit-or-miss topology," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1708-1717.
    7. Liu, Heng & Liao, Gongfu & Hou, Bingzhe, 2009. "The set-valued mapping induced by a non-minimal transitive system is Li–Yorke chaotic," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 826-830.
    8. Hou, Bingzhe & Liao, Gongfu & Liu, Heng, 2008. "Sensitivity for set-valued maps induced by M-systems," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1075-1080.
    9. Román-Flores, H. & Chalco-Cano, Y., 2008. "Some chaotic properties of Zadeh’s extensions," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 452-459.
    10. Andres, Jan, 2020. "Chaos for multivalued maps and induced hyperspace maps," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    11. Daghar, Aymen & Naghmouchi, Issam, 2022. "Entropy of induced maps of regular curves homeomorphisms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    12. Román-Flores, H. & Chalco-Cano, Y. & Silva, G.N. & Kupka, Jiří, 2011. "On turbulent, erratic and other dynamical properties of Zadeh’s extensions," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 990-994.
    13. Salman, Mohammad & Das, Ruchi, 2018. "Multi-sensitivity and other stronger forms of sensitivity in non-autonomous discrete systems," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 341-348.
    14. Li, Risong, 2012. "A note on stronger forms of sensitivity for dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 753-758.
    15. Camargo, Javier & Rincón, Michael & Uzcátegui, Carlos, 2019. "Equicontinuity of maps on dendrites," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 1-6.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1862-:d:434026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.