IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v126y2019icp1-6.html
   My bibliography  Save this article

Equicontinuity of maps on dendrites

Author

Listed:
  • Camargo, Javier
  • Rincón, Michael
  • Uzcátegui, Carlos

Abstract

Given a dendrite X and a continuous map f: X → X, we show the following are equivalent: (i) ωf is continuous and Per(f)¯=⋂n∈Nfn(X); (ii) ω(x,f)=Ω(x,f) for each x ∈ X; and (iii) f is equicontinuous. Furthermore, we present some examples illustrating our results.

Suggested Citation

  • Camargo, Javier & Rincón, Michael & Uzcátegui, Carlos, 2019. "Equicontinuity of maps on dendrites," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 1-6.
  • Handle: RePEc:eee:chsofr:v:126:y:2019:i:c:p:1-6
    DOI: 10.1016/j.chaos.2019.05.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919301985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.05.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Taixiang & Chen, Zhanhe & Liu, Xinhe & Xi, Hongjian, 2014. "Equicontinuity of dendrite maps," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 10-13.
    2. Banks, John, 2005. "Chaos for induced hyperspace maps," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 681-685.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cánovas Peña, Jose S. & López, Gabriel Soler, 2006. "Topological entropy for induced hyperspace maps," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 979-982.
    2. Fu, Heman & Xing, Zhitao, 2012. "Mixing properties of set-valued maps on hyperspaces via Furstenberg families," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 439-443.
    3. Sun, Taixiang & Su, Guangwang & Qin, Bin, 2019. "Pointwise equicontinuity of Zadeh’s extension of an interval map," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 1-4.
    4. Daniel Jardón & Iván Sánchez & Manuel Sanchis, 2020. "Transitivity in Fuzzy Hyperspaces," Mathematics, MDPI, vol. 8(11), pages 1-9, October.
    5. Félix Martínez-Giménez & Alfred Peris & Francisco Rodenas, 2021. "Chaos on Fuzzy Dynamical Systems," Mathematics, MDPI, vol. 9(20), pages 1-11, October.
    6. Sánchez, Iván & Sanchis, Manuel & Villanueva, Hugo, 2017. "Chaos in hyperspaces of nonautonomous discrete systems," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 68-74.
    7. Kwietniak, Dominik & Oprocha, Piotr, 2007. "Topological entropy and chaos for maps induced on hyperspaces," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 76-86.
    8. Daghar, Aymen & Naghmouchi, Issam, 2022. "Entropy of induced maps of regular curves homeomorphisms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    9. Román-Flores, H. & Chalco-Cano, Y. & Silva, G.N. & Kupka, Jiří, 2011. "On turbulent, erratic and other dynamical properties of Zadeh’s extensions," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 990-994.
    10. Wang, Yangeng & Wei, Guo & Campbell, William H. & Bourquin, Steven, 2009. "A framework of induced hyperspace dynamical systems equipped with the hit-or-miss topology," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1708-1717.
    11. Li, Risong, 2012. "A note on stronger forms of sensitivity for dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 753-758.
    12. Liu, Heng & Liao, Gongfu & Hou, Bingzhe, 2009. "The set-valued mapping induced by a non-minimal transitive system is Li–Yorke chaotic," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 826-830.
    13. Hou, Bingzhe & Liao, Gongfu & Liu, Heng, 2008. "Sensitivity for set-valued maps induced by M-systems," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1075-1080.
    14. Román-Flores, H. & Chalco-Cano, Y., 2008. "Some chaotic properties of Zadeh’s extensions," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 452-459.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:126:y:2019:i:c:p:1-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.