IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v25y2005i3p681-685.html
   My bibliography  Save this article

Chaos for induced hyperspace maps

Author

Listed:
  • Banks, John

Abstract

For (X,d) be a metric space, f:X→X a continuous map and (K(X),H) the space of non-empty compact subsets of X with the Hausdorff metric, one may study the dynamical properties of the induced map (∗)f¯:K(X)→K(X):A↦f(A).H. Román-Flores [A note on in set-valued discrete systems. Chaos, Solitons & Fractals 2003;17:99–104] has shown that if f¯ is topologically transitive then so is f, but that the reverse implication does not hold. This paper shows that the topological transitivity of f¯ is in fact equivalent to weak topological mixing on the part of f. This is proved in the more general context of an induced map on some suitable hyperspace H of X with the Vietoris topology (which agrees with the topology of the Hausdorff metric in the case discussed by Román-Flores.

Suggested Citation

  • Banks, John, 2005. "Chaos for induced hyperspace maps," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 681-685.
  • Handle: RePEc:eee:chsofr:v:25:y:2005:i:3:p:681-685
    DOI: 10.1016/j.chaos.2004.11.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077904007672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.11.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sánchez, Iván & Sanchis, Manuel & Villanueva, Hugo, 2017. "Chaos in hyperspaces of nonautonomous discrete systems," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 68-74.
    2. Cánovas Peña, Jose S. & López, Gabriel Soler, 2006. "Topological entropy for induced hyperspace maps," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 979-982.
    3. Li, Risong, 2012. "A note on stronger forms of sensitivity for dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 753-758.
    4. Daniel Jardón & Iván Sánchez & Manuel Sanchis, 2020. "Transitivity in Fuzzy Hyperspaces," Mathematics, MDPI, vol. 8(11), pages 1-9, October.
    5. Camargo, Javier & Rincón, Michael & Uzcátegui, Carlos, 2019. "Equicontinuity of maps on dendrites," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 1-6.
    6. Liu, Heng & Liao, Gongfu & Hou, Bingzhe, 2009. "The set-valued mapping induced by a non-minimal transitive system is Li–Yorke chaotic," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 826-830.
    7. Daghar, Aymen & Naghmouchi, Issam, 2022. "Entropy of induced maps of regular curves homeomorphisms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Román-Flores, H. & Chalco-Cano, Y. & Silva, G.N. & Kupka, Jiří, 2011. "On turbulent, erratic and other dynamical properties of Zadeh’s extensions," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 990-994.
    9. Román-Flores, H. & Chalco-Cano, Y., 2008. "Some chaotic properties of Zadeh’s extensions," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 452-459.
    10. Wang, Yangeng & Wei, Guo & Campbell, William H. & Bourquin, Steven, 2009. "A framework of induced hyperspace dynamical systems equipped with the hit-or-miss topology," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1708-1717.
    11. Félix Martínez-Giménez & Alfred Peris & Francisco Rodenas, 2021. "Chaos on Fuzzy Dynamical Systems," Mathematics, MDPI, vol. 9(20), pages 1-11, October.
    12. Kwietniak, Dominik & Oprocha, Piotr, 2007. "Topological entropy and chaos for maps induced on hyperspaces," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 76-86.
    13. Fu, Heman & Xing, Zhitao, 2012. "Mixing properties of set-valued maps on hyperspaces via Furstenberg families," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 439-443.
    14. Hou, Bingzhe & Liao, Gongfu & Liu, Heng, 2008. "Sensitivity for set-valued maps induced by M-systems," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1075-1080.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:25:y:2005:i:3:p:681-685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.