IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i10p1848-d431730.html
   My bibliography  Save this article

Boolean Valued Representation of Random Sets and Markov Kernels with Application to Large Deviations

Author

Listed:
  • Antonio Avilés López

    (Departamento de Matematica, Universidad de Murcia, Espinardo, 30100 Murcia, Spain)

  • José Miguel Zapata García

    (School of Mathematics and Statistics, University College Dublin, Belfield, 58622 Dublin 4, Ireland)

Abstract

We establish a connection between random set theory and Boolean valued analysis by showing that random Borel sets, random Borel functions, and Markov kernels are respectively represented by Borel sets, Borel functions, and Borel probability measures in a Boolean valued model. This enables a Boolean valued transfer principle to obtain random set analogues of available theorems. As an application, we establish a Boolean valued transfer principle for large deviations theory, which allows for the systematic interpretation of results in large deviations theory as versions for Markov kernels. By means of this method, we prove versions of Varadhan and Bryc theorems, and a conditional version of Cramér theorem.

Suggested Citation

  • Antonio Avilés López & José Miguel Zapata García, 2020. "Boolean Valued Representation of Random Sets and Markov Kernels with Application to Large Deviations," Mathematics, MDPI, vol. 8(10), pages 1-23, October.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1848-:d:431730
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/10/1848/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/10/1848/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asgar Jamneshan & Michael Kupper & José Miguel Zapata-García, 2020. "Parameter-Dependent Stochastic Optimal Control in Finite Discrete Time," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 644-666, August.
    2. Ilya Molchanov & Ignacio Cascos, 2016. "Multivariate Risk Measures: A Constructive Approach Based On Selections," Mathematical Finance, Wiley Blackwell, vol. 26(4), pages 867-900, October.
    3. Yuri Kabanov, 2009. "Markets with Transaction Costs. Mathematical Theory," Post-Print hal-00488168, HAL.
    4. Andreas Haier & Ilya Molchanov, 2019. "Multivariate risk measures in the non-convex setting," Papers 1902.00766, arXiv.org, revised Sep 2019.
    5. Molchanov,Ilya & Molinari,Francesca, 2018. "Random Sets in Econometrics," Cambridge Books, Cambridge University Press, number 9781107121201, October.
    6. Ignacio Cascos & Ilya Molchanov, 2013. "Multivariate risk measures: a constructive approach based on selections," Papers 1301.1496, arXiv.org, revised Jul 2016.
    7. Emmanuel Lepinette, 2020. "Random optimization on random sets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 159-173, February.
    8. Yuan, Demei & Hu, Xuemei, 2015. "A conditional version of the extended Kolmogorov–Feller weak law of large numbers," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 99-107.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilya Molchanov & Anja Muhlemann, 2019. "Nonlinear expectations of random sets," Papers 1903.04901, arXiv.org.
    2. Colubi, Ana & Ramos-Guajardo, Ana Belén, 2023. "Fuzzy sets and (fuzzy) random sets in Econometrics and Statistics," Econometrics and Statistics, Elsevier, vol. 26(C), pages 84-98.
    3. Andreas Haier & Ilya Molchanov & Michael Schmutz, 2015. "Intragroup transfers, intragroup diversification and their risk assessment," Papers 1511.06320, arXiv.org, revised Nov 2016.
    4. Haier Andreas & Molchanov Ilya, 2019. "Multivariate risk measures in the non-convex setting," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 25-35, December.
    5. Yanhong Chen & Yijun Hu, 2019. "Set-Valued Law Invariant Coherent And Convex Risk Measures," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-18, May.
    6. Emmanuel Lepinette & Ilya Molchanov, 2017. "Conditional cores and conditional convex hulls of random sets," Papers 1711.10303, arXiv.org.
    7. Andreas Haier & Ilya Molchanov, 2019. "Multivariate risk measures in the non-convex setting," Papers 1902.00766, arXiv.org, revised Sep 2019.
    8. Emmanuel Lepinette & Ilya Molchanov, 2016. "Risk Arbitrage and Hedging to Acceptability under Transaction Costs," Papers 1605.07884, arXiv.org, revised Apr 2020.
    9. Shuo Gong & Yijun Hu & Linxiao Wei, 2022. "Risk measurement of joint risk of portfolios: a liquidity shortfall aspect," Papers 2212.04848, arXiv.org, revised May 2024.
    10. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    11. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    12. Chen, Yanhong & Hu, Yijun, 2017. "Set-valued risk statistics with scenario analysis," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 25-37.
    13. Xiaochuan Deng & Fei Sun, 2019. "Regulator-based risk statistics for portfolios," Papers 1904.08829, arXiv.org, revised Jun 2020.
    14. Korotkov, Vladimir & Wu, Desheng, 2021. "Benchmarking project portfolios using optimality thresholds," Omega, Elsevier, vol. 99(C).
    15. Roozegar, Roohollah & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2020. "On moments of doubly truncated multivariate normal mean–variance mixture distributions with application to multivariate tail conditional expectation," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    16. c{C}au{g}{i}n Ararat & Zachary Feinstein, 2019. "Set-Valued Risk Measures as Backward Stochastic Difference Inclusions and Equations," Papers 1912.06916, arXiv.org, revised Sep 2020.
    17. Shushi, Tomer, 2018. "Stein’s lemma for truncated elliptical random vectors," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 297-303.
    18. Baishuai Zuo & Chuancun Yin, 2022. "Doubly truncated moment risk measures for elliptical distributions," Papers 2203.01091, arXiv.org.
    19. Ilya Molchanov & Anja Mühlemann, 2021. "Nonlinear expectations of random sets," Finance and Stochastics, Springer, vol. 25(1), pages 5-41, January.
    20. Çağın Ararat & Zachary Feinstein, 2021. "Set-valued risk measures as backward stochastic difference inclusions and equations," Finance and Stochastics, Springer, vol. 25(1), pages 43-76, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1848-:d:431730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.