IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i8p764-d259310.html
   My bibliography  Save this article

Linguistic Picture Fuzzy Dombi Aggregation Operators and Their Application in Multiple Attribute Group Decision Making Problem

Author

Listed:
  • Muhammad Qiyas

    (Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan)

  • Saleem Abdullah

    (Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan)

  • Shahzaib Ashraf

    (Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan)

  • Lazim Abdullah

    (School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia)

Abstract

The aims of this study are to propose the linguistic picture fuzzy Dombi (LPFD) aggregation operators and decision-making approach to deal with uncertainties in the form of linguistic picture fuzzy sets. LPFD operators have more flexibility due to the general fuzzy set. Utilizing the Dombi operational rule, the series of Dombi aggregation operators were proposed, namely linguistic picture fuzzy Dombi arithmetic/geometric, ordered arithmetic/ordered geometric and Hybrid arithmetic/Hybrid geometric aggregation operators. The distinguished feature of these proposed operators is studied. At that point, we have used these Dombi operators to design a model to deal with multiple attribute decision-making (MADM) issues under linguistic picture fuzzy information. Finally, an illustrative example to evaluate the emerging technology enterprises is provided to demonstrate the effectiveness of the proposed approach, together with a sensitivity analysis and comparison analysis, proving that its results are feasible and credible.

Suggested Citation

  • Muhammad Qiyas & Saleem Abdullah & Shahzaib Ashraf & Lazim Abdullah, 2019. "Linguistic Picture Fuzzy Dombi Aggregation Operators and Their Application in Multiple Attribute Group Decision Making Problem," Mathematics, MDPI, vol. 7(8), pages 1-22, August.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:8:p:764-:d:259310
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/8/764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/8/764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shouzhen Zeng & Muhammad Qiyas & Muhammad Arif & Tariq Mahmood, 2019. "Extended Version of Linguistic Picture Fuzzy TOPSIS Method and Its Applications in Enterprise Resource Planning Systems," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-8, January.
    2. Xiaorong He, 2018. "Typhoon disaster assessment based on Dombi hesitant fuzzy information aggregation operators," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1153-1175, February.
    3. Peide Liu & Junlin Liu & Shyi-Ming Chen, 2018. "Some intuitionistic fuzzy Dombi Bonferroni mean operators and their application to multi-attribute group decision making," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu Zhang & Weimin Ma, 2023. "Study on Chaotic Multi-Attribute Group Decision Making Based on Weighted Neutrosophic Fuzzy Soft Rough Sets," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    2. Çağlar Karamaşa & Selçuk Korucuk & Ezgi Demir & Salih Memiş, 2023. "A Quantitative Analysis for Prioritizing Success Elements in Agile Logistics Applications: The Case of Giresun and Ordu," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 11(1), pages 63-84, July.
    3. Kou, Gang & Yüksel, Serhat & Dinçer, Hasan, 2022. "Inventive problem-solving map of innovative carbon emission strategies for solar energy-based transportation investment projects," Applied Energy, Elsevier, vol. 311(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiahuan He & Xindi Wang & Runtong Zhang & Li Li, 2019. "Some q -Rung Picture Fuzzy Dombi Hamy Mean Operators with Their Application to Project Assessment," Mathematics, MDPI, vol. 7(5), pages 1-28, May.
    2. Peide Liu & Hongyu Yang & Haiquan Wu & Meilong Ju & Fawaz E. Alsaadi, 2019. "Some Maclaurin Symmetric Mean Aggregation Operators Based on Cloud Model and Their Application to Decision-Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 981-1007, May.
    3. Shouzhen Zeng & Dandan Luo & Chonghui Zhang & Xingsen Li, 2020. "A Correlation-Based TOPSIS Method for Multiple Attribute Decision Making with Single-Valued Neutrosophic Information," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 343-358, February.
    4. Yuchu Qin & Xiaolan Cui & Meifa Huang & Yanru Zhong & Zhemin Tang & Peizhi Shi, 2019. "Archimedean Muirhead Aggregation Operators of q-Rung Orthopair Fuzzy Numbers for Multicriteria Group Decision Making," Complexity, Hindawi, vol. 2019, pages 1-33, December.
    5. Zhengmin Liu & Lin Li & Xiaolan Zhao & Linbin Sha & Di Wang & Xinya Wang & Peide Liu, 2020. "Selecting the Optimal Green Agricultural Products Supplier: A Novel Approach Based on GBWM and PROMETHEE II," Sustainability, MDPI, vol. 12(17), pages 1-23, August.
    6. Li Li & Hegong Lei & Jun Wang, 2020. "Q -Rung Probabilistic Dual Hesitant Fuzzy Sets and Their Application in Multi-Attribute Decision-Making," Mathematics, MDPI, vol. 8(9), pages 1-34, September.
    7. Oleg Uzhga-Rebrov & Peter Grabusts, 2023. "Methodology for Environmental Risk Analysis Based on Intuitionistic Fuzzy Values," Risks, MDPI, vol. 11(5), pages 1-22, May.
    8. Wei Yang & Yongfeng Pang, 2022. "T-Spherical Fuzzy Bonferroni Mean Operators and Their Application in Multiple Attribute Decision Making," Mathematics, MDPI, vol. 10(6), pages 1-33, March.
    9. Liangping Wu & Guiwu Wei & Jiang Wu & Cun Wei, 2020. "Some Interval-Valued Intuitionistic Fuzzy Dombi Heronian Mean Operators and their Application for Evaluating the Ecological Value of Forest Ecological Tourism Demonstration Areas," IJERPH, MDPI, vol. 17(3), pages 1-31, January.
    10. Liangping Wu & Guiwu Wei & Hui Gao & Yu Wei, 2018. "Some Interval-Valued Intuitionistic Fuzzy Dombi Hamy Mean Operators and Their Application for Evaluating the Elderly Tourism Service Quality in Tourism Destination," Mathematics, MDPI, vol. 6(12), pages 1-20, December.
    11. Yang, Zaoli & Ahmad, Salman & Bernardi, Andrea & Shang, Wen-long & Xuan, Jin & Xu, Bing, 2023. "Evaluating alternative low carbon fuel technologies using a stakeholder participation-based q-rung orthopair linguistic multi-criteria framework," Applied Energy, Elsevier, vol. 332(C).
    12. Wenying Wu & Zhiwei Ni & Feifei Jin & Jian Wu & Ying Li & Ping Li, 2021. "Investment Selection Based on Bonferroni Mean under Generalized Probabilistic Hesitant Fuzzy Environments," Mathematics, MDPI, vol. 9(1), pages 1-21, January.
    13. Gulfam Shahzadi & Muhammad Akram & Ahmad N. Al-Kenani, 2020. "Decision-Making Approach under Pythagorean Fuzzy Yager Weighted Operators," Mathematics, MDPI, vol. 8(1), pages 1-20, January.
    14. Fu Zhang & Weimin Ma, 2023. "Study on Chaotic Multi-Attribute Group Decision Making Based on Weighted Neutrosophic Fuzzy Soft Rough Sets," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    15. Arshad Ahmad Khan & Muhammad Qiyas & Saleem Abdullah & Jianchao Luo & Mahwish Bano, 2019. "Analysis of Robot Selection Based on 2-Tuple Picture Fuzzy Linguistic Aggregation Operators," Mathematics, MDPI, vol. 7(10), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:8:p:764-:d:259310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.