IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i5p399-d227951.html
   My bibliography  Save this article

The Odd Gamma Weibull-Geometric Model: Theory and Applications

Author

Listed:
  • Rana Muhammad Imran Arshad

    (Department of Statistics, The Islamia University of Bahawalpur, Punjab 63100, Pakistan)

  • Christophe Chesneau

    (Department of Mathematics, LMNO, University of Caen, 14032 Caen, France)

  • Farrukh Jamal

    (Department of Statistics, Govt. S.A Postgraduate College Dera Nawab Sahib, Bahawalpur, Punjab 63360, Pakistan)

Abstract

In this paper, we study a new four-parameter distribution called the odd gamma Weibull-geometric distribution. Having the qualities suggested by its name, the new distribution is a special member of the odd-gamma-G family of distributions, defined with the Weibull-geometric distribution as baseline, benefiting of their respective merits. Firstly, we present a comprehensive account of its mathematical properties, including shapes, asymptotes, quantile function, quantile density function, skewness, kurtosis, moments, moment generating function and stochastic ordering. Then, we focus our attention on the statistical inference of the corresponding model. The maximum likelihood estimation method is used to estimate the model parameters. The performance of this method is assessed by a Monte Carlo simulation study. An empirical illustration of the new distribution is presented by the analyses two real-life data sets. The results of the proposed model reveal to be better as compared to those of the useful beta-Weibull, gamma-Weibull and Weibull-geometric models.

Suggested Citation

  • Rana Muhammad Imran Arshad & Christophe Chesneau & Farrukh Jamal, 2019. "The Odd Gamma Weibull-Geometric Model: Theory and Applications," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:5:p:399-:d:227951
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/5/399/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/5/399/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Callealta Barroso, Francisco Javier & García-Pérez, Carmelo & Prieto-Alaiz, Mercedes, 2020. "Modelling income distribution using the log Student’s t distribution: New evidence for European Union countries," Economic Modelling, Elsevier, vol. 89(C), pages 512-522.
    2. Raid Al-Aqtash & Avishek Mallick & G.G. Hamedani & Mahmoud Aldeni, 2021. "On the Gumbel-Burr XII Distribution: Regression and Application," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(6), pages 1-31, December.
    3. Peer Bilal Ahmad & Mohammad Kafeel Wani, 2024. "A New Compound Distribution and Its Applications in Over-dispersed Count Data," Annals of Data Science, Springer, vol. 11(5), pages 1799-1820, October.
    4. Pedro Rafael D Marinho & Rodrigo B Silva & Marcelo Bourguignon & Gauss M Cordeiro & Saralees Nadarajah, 2019. "AdequacyModel: An R package for probability distributions and general purpose optimization," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-30, August.
    5. Rashad A. R. Bantan & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy & Muhammad H. Tahir & Aqib Ali & Muhammad Zubair & Sania Anam, 2020. "Some New Facts about the Unit-Rayleigh Distribution with Applications," Mathematics, MDPI, vol. 8(11), pages 1-23, November.
    6. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    7. Sajid Hussain & Muhammad Sajid Rashid & Mahmood Ul Hassan & Rashid Ahmed, 2022. "The Generalized Alpha Exponent Power Family of Distributions: Properties and Applications," Mathematics, MDPI, vol. 10(9), pages 1-19, April.
    8. Sher B. Chhetri & Alfred A. Akinsete & Gokarna Aryal & Hongwei Long, 2017. "The Kumaraswamy transmuted Pareto distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-24, December.
    9. Gokarna R. Aryal & Keshav P. Pokhrel & Netra Khanal & Chris P. Tsokos, 2019. "Reliability Models Using the Composite Generalizers of Weibull Distribution," Annals of Data Science, Springer, vol. 6(4), pages 807-829, December.
    10. Muhammad H. Tahir & Muhammad Adnan Hussain & Gauss M. Cordeiro & M. El-Morshedy & M. S. Eliwa, 2020. "A New Kumaraswamy Generalized Family of Distributions with Properties, Applications, and Bivariate Extension," Mathematics, MDPI, vol. 8(11), pages 1-28, November.
    11. Pedro L. Ramos & Francisco Louzada, 2019. "A Distribution for Instantaneous Failures," Stats, MDPI, vol. 2(2), pages 1-12, May.
    12. Srdjan Kadić & Božidar V. Popović & Ali İ. Genç, 2023. "Two Families of Continuous Probability Distributions Generated by the Discrete Lindley Distribution," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    13. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:5:p:399-:d:227951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.