IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i2p113-d199793.html
   My bibliography  Save this article

A Meshless Method for Burgers’ Equation Using Multiquadric Radial Basis Functions With a Lie-Group Integrator

Author

Listed:
  • Muaz Seydaoğlu

    (Department of Mathematics, Faculty of Art and Science, Muş Alparslan University, 49100 Muş, Turkey)

Abstract

An efficient technique is proposed to solve the one-dimensional Burgers’ equation based on multiquadric radial basis function (MQ-RBF) for space approximation and a Lie-Group scheme for time integration. The comparisons of the numerical results obtained for different values of kinematic viscosity are made with the exact solutions and the reported results to demonstrate the efficiency and accuracy of the algorithm. It is shown that the numerical solutions concur with existing results and the proposed algorithm is efficient and can be easily implemented.

Suggested Citation

  • Muaz Seydaoğlu, 2019. "A Meshless Method for Burgers’ Equation Using Multiquadric Radial Basis Functions With a Lie-Group Integrator," Mathematics, MDPI, vol. 7(2), pages 1-11, January.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:2:p:113-:d:199793
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/2/113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/2/113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mukundan, Vijitha & Awasthi, Ashish, 2015. "Efficient numerical techniques for Burgers’ equation," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 282-297.
    2. Maryam Sarboland & Azim Aminataei, 2014. "On the Numerical Solution of One-Dimensional Nonlinear Nonhomogeneous Burgers’ Equation," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-15, April.
    3. Huantian Xie & Dingfang Li & Feng Li, 2013. "A New Numerical Method of Particular Solutions for Inhomogeneous Burgers’ Equation," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-7, July.
    4. Hajiketabi, M. & Abbasbandy, S. & Casas, F., 2018. "The Lie-group method based on radial basis functions for solving nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation in arbitrary domains," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 223-243.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Changkai & Zhang, Xiaohua & Liu, Zhang, 2020. "A high-order compact finite difference scheme and precise integration method based on modified Hopf-Cole transformation for numerical simulation of n-dimensional Burgers’ system," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    2. Hajiketabi, M. & Casas, F., 2020. "Numerical integrators based on the Magnus expansion for nonlinear dynamical systems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    3. Guo, Yan & Shi, Yu-feng & Li, Yi-min, 2016. "A fifth-order finite volume weighted compact scheme for solving one-dimensional Burgers’ equation," Applied Mathematics and Computation, Elsevier, vol. 281(C), pages 172-185.
    4. Hassani, Hossein & Naraghirad, Eskandar, 2019. "A new computational method based on optimization scheme for solving variable-order time fractional Burgers’ equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 1-17.
    5. Oruç, Ömer, 2021. "A radial basis function finite difference (RBF-FD) method for numerical simulation of interaction of high and low frequency waves: Zakharov–Rubenchik equations," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    6. Hashemi, M.S., 2021. "A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:2:p:113-:d:199793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.