IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i12p1135-d289536.html
   My bibliography  Save this article

Numerical Estimation and Experimental Verification of Optimal Parameter Identification Based on Modern Optimization of a Three Phase Induction Motor

Author

Listed:
  • Hegazy Rezk

    (College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, Al-Kharj 11991, Saudi Arabia
    Electrical Engineering Dept., Faculty of Engineering, Minia University, Al-Minya 61519, Egypt)

  • Asmaa A. Elghany

    (Electrical Engineering Department, Beni Suef University, Beni Suef 62521, Egypt)

  • Mujahed Al-Dhaifallah

    (Systems Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Abo Hashema M. El Sayed

    (Electrical Engineering Dept., Faculty of Engineering, Minia University, Al-Minya 61519, Egypt)

  • Mohamed N. Ibrahim

    (Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Ghent University, 9000 Ghent, Belgium
    FlandersMake@UGent—Corelab EEDT-MP, 3001 Leuven, Belgium
    Electrical Engineering Department, Kafrelshiekh University, Kafr El-Sheikh 33511, Egypt)

Abstract

The parameters of electric machines play a substantial role in the control system which, in turn, has a great impact on machine performance. In this paper, a proposed optimal estimation method for the electrical parameters of induction motors is presented. The proposed method uses the particle swarm optimization (PSO) technique. Further, it also considers the influence of temperature on the stator resistance. A complete experimental setup was constructed to validate the proposed method. The estimated electrical parameters of a 3.8-hp induction motor are compared with the measured values. A heat run test was performed to compare the effect of temperature on the stator resistance based on the proposed estimation method and the experimental measurements at the same conditions. It is shown that acceptable accuracy between the simulated results and the experimental measurements has been achieved.

Suggested Citation

  • Hegazy Rezk & Asmaa A. Elghany & Mujahed Al-Dhaifallah & Abo Hashema M. El Sayed & Mohamed N. Ibrahim, 2019. "Numerical Estimation and Experimental Verification of Optimal Parameter Identification Based on Modern Optimization of a Three Phase Induction Motor," Mathematics, MDPI, vol. 7(12), pages 1-13, November.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1135-:d:289536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/12/1135/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/12/1135/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fathy, Ahmed & Rezk, Hegazy, 2018. "Multi-verse optimizer for identifying the optimal parameters of PEMFC model," Energy, Elsevier, vol. 143(C), pages 634-644.
    2. Mohamed, Mohamed A. & Zaki Diab, Ahmed A. & Rezk, Hegazy, 2019. "Partial shading mitigation of PV systems via different meta-heuristic techniques," Renewable Energy, Elsevier, vol. 130(C), pages 1159-1175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Laith Abualigah & Ali Diabat & Davor Svetinovic & Mohamed Abd Elaziz, 2023. "Boosted Harris Hawks gravitational force algorithm for global optimization and industrial engineering problems," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2693-2728, August.
    3. Nassef, Ahmed M. & Olabi, A.G. & Rodriguez, Cristina & Abdelkareem, Mohammad Ali & Rezk, Hegazy, 2021. "Optimal operating parameter determination and modeling to enhance methane production from macroalgae," Renewable Energy, Elsevier, vol. 163(C), pages 2190-2197.
    4. Ghazi A. Ghazi & Hany M. Hasanien & Essam A. Al-Ammar & Rania A. Turky & Wonsuk Ko & Sisam Park & Hyeong-Jin Choi, 2022. "African Vulture Optimization Algorithm-Based PI Controllers for Performance Enhancement of Hybrid Renewable-Energy Systems," Sustainability, MDPI, vol. 14(13), pages 1-26, July.
    5. Ahmed Fathy & Hegazy Rezk & Dalia Yousri & Essam H. Houssein & Rania M. Ghoniem, 2021. "Parameter Identification of Optimized Fractional Maximum Power Point Tracking for Thermoelectric Generation Systems Using Manta Ray Foraging Optimization," Mathematics, MDPI, vol. 9(22), pages 1-18, November.
    6. Ehtisham Lodhi & Fei-Yue Wang & Gang Xiong & Ghulam Ali Mallah & Muhammad Yaqoob Javed & Tariku Sinshaw Tamir & David Wenzhong Gao, 2021. "A Dragonfly Optimization Algorithm for Extracting Maximum Power of Grid-Interfaced PV Systems," Sustainability, MDPI, vol. 13(19), pages 1-27, September.
    7. Tanveer, Waqas Hassan & Rezk, Hegazy & Nassef, Ahmed & Abdelkareem, Mohammad Ali & Kolosz, Ben & Karuppasamy, K. & Aslam, Jawad & Gilani, Syed Omer, 2020. "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, Elsevier, vol. 204(C).
    8. Hegazy Rezk & Ziad Mohammed Ali & Omer Abdalla & Obai Younis & Mohamed Ramadan Gomaa & Mauia Hashim, 2019. "Hybrid Moth-Flame Optimization Algorithm and Incremental Conductance for Tracking Maximum Power of Solar PV/Thermoelectric System under Different Conditions," Mathematics, MDPI, vol. 7(10), pages 1-21, September.
    9. N. Kanagaraj & Hegazy Rezk & Mohamed R. Gomaa, 2020. "A Variable Fractional Order Fuzzy Logic Control Based MPPT Technique for Improving Energy Conversion Efficiency of Thermoelectric Power Generator," Energies, MDPI, vol. 13(17), pages 1-18, September.
    10. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    11. Yang, Zirong & Jiao, Kui & Wu, Kangcheng & Shi, Weilong & Jiang, Shangfeng & Zhang, Longhai & Du, Qing, 2021. "Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 222(C).
    12. Fathy, Ahmed & Rezk, Hegazy & Alharbi, Abdullah G. & Yousri, Dalia, 2023. "Proton exchange membrane fuel cell model parameters identification using Chaotically based-bonobo optimizer," Energy, Elsevier, vol. 268(C).
    13. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    14. Fathy, Ahmed & Babu, Thanikanti Sudhakar & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Yousri, Dalia, 2022. "Recent approach based heterogeneous comprehensive learning Archimedes optimization algorithm for identifying the optimal parameters of different fuel cells," Energy, Elsevier, vol. 248(C).
    15. Banaja Mohanty & Rajvikram Madurai Elavarasan & Hany M. Hasanien & Elangovan Devaraj & Rania A. Turky & Rishi Pugazhendhi, 2022. "Parameters Identification of Proton Exchange Membrane Fuel Cell Model Based on the Lightning Search Algorithm," Energies, MDPI, vol. 15(21), pages 1-19, October.
    16. Ángel Encalada-Dávila & Samir Echeverría & Jordy Santana-Villamar & Gabriel Cedeño & Mayken Espinoza-Andaluz, 2021. "Optimization Algorithms: Optimal Parameters Computation for Modeling the Polarization Curves of a PEFC Considering the Effect of the Relative Humidity," Energies, MDPI, vol. 14(18), pages 1-21, September.
    17. Tian, B. & Loonen, R.C.G.M. & Bognár, Á. & Hensen, J.L.M., 2022. "Impacts of surface model generation approaches on raytracing-based solar potential estimation in urban areas," Renewable Energy, Elsevier, vol. 198(C), pages 804-824.
    18. Rudravaram Venkatasatish & Dhanamjayulu Chittathuru, 2023. "Coyote Optimization Algorithm-Based Energy Management Strategy for Fuel Cell Hybrid Power Systems," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    19. Hegazy Rezk & Tabbi Wilberforce & A. G. Olabi & Rania M. Ghoniem & Enas Taha Sayed & Mohammad Ali Abdelkareem, 2023. "Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms," Energies, MDPI, vol. 16(14), pages 1-20, July.
    20. Frangopoulos, Christos A., 2018. "Recent developments and trends in optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 1011-1020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1135-:d:289536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.