IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i11p1112-d287494.html
   My bibliography  Save this article

Using G -Functions to Investigate the Evolutionary Stability of Bacterial Quorum Sensing

Author

Listed:
  • Anne Mund

    (Zentrum Mathematik, Technische Universität München Boltzmannstr. 3, 85748 Garching, Germany)

  • Christina Kuttler

    (Zentrum Mathematik, Technische Universität München Boltzmannstr. 3, 85748 Garching, Germany)

  • Judith Pérez-Velázquez

    (Zentrum Mathematik, Technische Universität München Boltzmannstr. 3, 85748 Garching, Germany)

Abstract

In ecology, G -functions can be employed to define a growth function G for a population b , which can then be universally applied to all individuals or groups b i within this population. We can further define a strategy v i for every group b i . Examples for strategies include diverse behaviour such as number of offspring, habitat choice, and time of nesting for birds. In this work, we employ G -functions to investigate the evolutionary stability of the bacterial cooperation process known as quorum sensing. We employ the G -function ansatz to model both the population dynamics and the resulting evolutionary pressure in order to find evolutionary stable states. This results in a semi-linear parabolic system of equations, where cost and benefit are taken into account separately. Depending on different biological assumptions, we analyse a variety of typical model functions. These translate into different long-term scenarios for different functional responses, ranging from single-strategy states to coexistence. As a special feature, we distinguish between the production of public goods, available for all subpopulations, and private goods, from which only the producers can benefit.

Suggested Citation

  • Anne Mund & Christina Kuttler & Judith Pérez-Velázquez, 2019. "Using G -Functions to Investigate the Evolutionary Stability of Bacterial Quorum Sensing," Mathematics, MDPI, vol. 7(11), pages 1-17, November.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1112-:d:287494
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/11/1112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/11/1112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen P. Diggle & Ashleigh S. Griffin & Genevieve S. Campbell & Stuart A. West, 2007. "Cooperation and conflict in quorum-sensing bacterial populations," Nature, Nature, vol. 450(7168), pages 411-414, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerry E Boyle & Hilary Monaco & Dave van Ditmarsch & Maxime Deforet & Joao B Xavier, 2015. "Integration of Metabolic and Quorum Sensing Signals Governing the Decision to Cooperate in a Bacterial Social Trait," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-26, June.
    2. Jorge M Pacheco & Vítor V Vasconcelos & Francisco C Santos & Brian Skyrms, 2015. "Co-evolutionary Dynamics of Collective Action with Signaling for a Quorum," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-12, February.
    3. Eran Even-Tov & Shira Omer Bendori & Julie Valastyan & Xiaobo Ke & Shaul Pollak & Tasneem Bareia & Ishay Ben-Zion & Bonnie L Bassler & Avigdor Eldar, 2016. "Social Evolution Selects for Redundancy in Bacterial Quorum Sensing," PLOS Biology, Public Library of Science, vol. 14(2), pages 1-18, February.
    4. Li, Yixiao & Shen, Bin, 2013. "The coevolution of partner switching and strategy updating in non-excludable public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4956-4965.
    5. Elhanati, Yuval & Schuster, Stefan & Brenner, Naama, 2011. "Dynamic modeling of cooperative protein secretion in microorganism populations," Theoretical Population Biology, Elsevier, vol. 80(1), pages 49-63.
    6. Martin Schuster & Eric Foxall & David Finch & Hal Smith & Patrick De Leenheer, 2017. "Tragedy of the commons in the chemostat," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1112-:d:287494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.