IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v80y2011i1p49-63.html
   My bibliography  Save this article

Dynamic modeling of cooperative protein secretion in microorganism populations

Author

Listed:
  • Elhanati, Yuval
  • Schuster, Stefan
  • Brenner, Naama

Abstract

Interactions between microorganisms can have a crucial effect on their population dynamics. Typically, interactions are mediated through the environment by molecules and proteins that are products of cell metabolism and physiology; they therefore reflect the internal dynamics of the single cell. In this work we aim to integrate single-cell properties of gene expression that affect indirect interactions between microorganisms under challenging conditions, into a quantitative model of population dynamics. Specifically we address the problem of a microbial population secreting a protein that can actively extract a growth-limiting resource, such as a simple sugar or iron, from the environment. The genes coding for the protein can undergo random epigenetic transitions between active and silenced states, and can be repressed by the product of their reaction. We model cooperative and competitive interactions between protein producing and non-producing phenotypes by nonlinear dynamical systems and analyze them both in terms of asymptotic states and of transient dynamics. Our model shows that phenotypic transitions allow a stable coexistence of the two phenotypes, and enables us to make predictions regarding the conditions required for such coexistence and the typical timescales of transient dynamics. It also shows how repression by the reaction product induces a feedback at the population-environment level that can result in limit cycle dynamics. The relation of these results to experiments are discussed.

Suggested Citation

  • Elhanati, Yuval & Schuster, Stefan & Brenner, Naama, 2011. "Dynamic modeling of cooperative protein secretion in microorganism populations," Theoretical Population Biology, Elsevier, vol. 80(1), pages 49-63.
  • Handle: RePEc:eee:thpobi:v:80:y:2011:i:1:p:49-63
    DOI: 10.1016/j.tpb.2011.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580911000311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2011.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ashleigh S. Griffin & Stuart A. West & Angus Buckling, 2004. "Cooperation and competition in pathogenic bacteria," Nature, Nature, vol. 430(7003), pages 1024-1027, August.
    2. Stephen P. Diggle & Ashleigh S. Griffin & Genevieve S. Campbell & Stuart A. West, 2007. "Cooperation and conflict in quorum-sensing bacterial populations," Nature, Nature, vol. 450(7168), pages 411-414, November.
    3. R. Craig MacLean & Ivana Gudelj, 2006. "Resource competition and social conflict in experimental populations of yeast," Nature, Nature, vol. 441(7092), pages 498-501, May.
    4. Jeff Gore & Hyun Youk & Alexander van Oudenaarden, 2009. "Snowdrift game dynamics and facultative cheating in yeast," Nature, Nature, vol. 459(7244), pages 253-256, May.
    5. Hauert, Christoph & Wakano, Joe Yuichiro & Doebeli, Michael, 2008. "Ecological public goods games: Cooperation and bifurcation," Theoretical Population Biology, Elsevier, vol. 73(2), pages 257-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filiba, E. & Lewin, D. & Brenner, N., 2012. "Transients and tradeoffs of phenotypic switching in a fluctuating limited environment," Theoretical Population Biology, Elsevier, vol. 82(3), pages 187-199.
    2. Behar, Hilla & Brenner, Naama & Louzoun, Yoram, 2014. "Coexistence of productive and non-productive populations by fluctuation-driven spatio-temporal patterns," Theoretical Population Biology, Elsevier, vol. 96(C), pages 20-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Schuster & Eric Foxall & David Finch & Hal Smith & Patrick De Leenheer, 2017. "Tragedy of the commons in the chemostat," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    2. Kerry E Boyle & Hilary Monaco & Dave van Ditmarsch & Maxime Deforet & Joao B Xavier, 2015. "Integration of Metabolic and Quorum Sensing Signals Governing the Decision to Cooperate in a Bacterial Social Trait," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-26, June.
    3. Ivana Gudelj & Margie Kinnersley & Peter Rashkov & Karen Schmidt & Frank Rosenzweig, 2016. "Stability of Cross-Feeding Polymorphisms in Microbial Communities," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-17, December.
    4. Felix J H Hol & Peter Galajda & Krisztina Nagy & Rutger G Woolthuis & Cees Dekker & Juan E Keymer, 2013. "Spatial Structure Facilitates Cooperation in a Social Dilemma: Empirical Evidence from a Bacterial Community," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    5. Richard J. Lindsay & Philippa J. Holder & Mark Hewlett & Ivana Gudelj, 2024. "Experimental evolution of yeast shows that public-goods upregulation can evolve despite challenges from exploitative non-producers," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Kazufumi Hosoda & Shingo Suzuki & Yoshinori Yamauchi & Yasunori Shiroguchi & Akiko Kashiwagi & Naoaki Ono & Kotaro Mori & Tetsuya Yomo, 2011. "Cooperative Adaptation to Establishment of a Synthetic Bacterial Mutualism," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-9, February.
    7. Olga A Nev & Richard J Lindsay & Alys Jepson & Lisa Butt & Robert E Beardmore & Ivana Gudelj, 2021. "Predicting microbial growth dynamics in response to nutrient availability," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-20, March.
    8. Jorge Peña & Bin Wu & Jordi Arranz & Arne Traulsen, 2016. "Evolutionary Games of Multiplayer Cooperation on Graphs," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-15, August.
    9. Liu, Yuan & Cao, Lixuan & Wu, Bin, 2022. "General non-linear imitation leads to limit cycles in eco-evolutionary dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    10. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    11. Behar, Hilla & Brenner, Naama & Louzoun, Yoram, 2014. "Coexistence of productive and non-productive populations by fluctuation-driven spatio-temporal patterns," Theoretical Population Biology, Elsevier, vol. 96(C), pages 20-29.
    12. David Bruce Borenstein & Yigal Meir & Joshua W Shaevitz & Ned S Wingreen, 2013. "Non-Local Interaction via Diffusible Resource Prevents Coexistence of Cooperators and Cheaters in a Lattice Model," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-10, May.
    13. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    14. Xiaojie Chen & Attila Szolnoki, 2018. "Punishment and inspection for governing the commons in a feedback-evolving game," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-15, July.
    15. Felix Funk & Christoph Hauert, 2019. "Directed migration shapes cooperation in spatial ecological public goods games," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-14, August.
    16. Borofsky, Talia & Feldman, Marcus W. & Ram, Yoav, 2024. "Cultural transmission, competition for prey, and the evolution of cooperative hunting," Theoretical Population Biology, Elsevier, vol. 156(C), pages 12-21.
    17. Claudius Gros, 2022. "Generic catastrophic poverty when selfish investors exploit a degradable common resource," Papers 2208.08171, arXiv.org, revised Jan 2023.
    18. Wu, Yu’e & Zhang, Zhipeng & Wang, Xinyu & Chang, Shuhua, 2019. "Impact of probabilistic incentives on the evolution of cooperation in complex topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 307-314.
    19. Anne Mund & Christina Kuttler & Judith Pérez-Velázquez, 2019. "Using G -Functions to Investigate the Evolutionary Stability of Bacterial Quorum Sensing," Mathematics, MDPI, vol. 7(11), pages 1-17, November.
    20. Asher Leeks & Stuart A. West & Melanie Ghoul, 2021. "The evolution of cheating in viruses," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:80:y:2011:i:1:p:49-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.