IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i10p880-d269516.html
   My bibliography  Save this article

Variational Methods for an Impulsive Fractional Differential Equations with Derivative Term

Author

Listed:
  • Yulin Zhao

    (School of Science, Hunan University of Technology, Zhuzhou 412007, China)

  • Jiafa Xu

    (School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China)

  • Haibo Chen

    (School of Mathematics and Statistics, Central South University, Changsha 410083, China)

Abstract

This paper is devoted to studying the existence of solutions to a class of impulsive fractional differential equations with derivative dependence. The used technical approach is based on variational methods and iterative methods. In addition, an example is given to demonstrate the main results.

Suggested Citation

  • Yulin Zhao & Jiafa Xu & Haibo Chen, 2019. "Variational Methods for an Impulsive Fractional Differential Equations with Derivative Term," Mathematics, MDPI, vol. 7(10), pages 1-15, September.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:880-:d:269516
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/10/880/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/10/880/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Yulin & Chen, Haibo & Xu, Chengjie, 2017. "Nontrivial solutions for impulsive fractional differential equations via Morse theory," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 170-179.
    2. Zhao, Yulin & Chen, Haibo & Qin, Bin, 2015. "Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 417-427.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nyamoradi, Nemat & Rodríguez-López, Rosana, 2015. "On boundary value problems for impulsive fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 874-892.
    2. Fares Kamache & Rafik Guefaifia & Salah Boulaaras & Asma Alharbi, 2020. "Existence of Weak Solutions for a New Class of Fractional p -Laplacian Boundary Value Systems," Mathematics, MDPI, vol. 8(4), pages 1-18, March.
    3. Danyang Kang & Cuiling Liu & Xingyong Zhang, 2020. "Existence of Solutions for Kirchhoff-Type Fractional Dirichlet Problem with p -Laplacian," Mathematics, MDPI, vol. 8(1), pages 1-17, January.
    4. Dongdong Gao & Jianli Li, 2021. "New results for impulsive fractional differential equations through variational methods," Mathematische Nachrichten, Wiley Blackwell, vol. 294(10), pages 1866-1878, October.
    5. Zhao, Yulin & Chen, Haibo & Xu, Chengjie, 2017. "Nontrivial solutions for impulsive fractional differential equations via Morse theory," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 170-179.
    6. Youzheng Ding & Jiafa Xu & Zhengqing Fu, 2019. "Positive Solutions for a System of Fractional Integral Boundary Value Problems of Riemann–Liouville Type Involving Semipositone Nonlinearities," Mathematics, MDPI, vol. 7(10), pages 1-19, October.
    7. Salari, Amjad & Ghanbari, Behzad, 2019. "Existence and multiplicity for some boundary value problems involving Caputo and Atangana–Baleanu fractional derivatives: A variational approach," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 312-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:880-:d:269516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.