IDEAS home Printed from https://ideas.repec.org/a/bla/mathna/v294y2021i10p1866-1878.html
   My bibliography  Save this article

New results for impulsive fractional differential equations through variational methods

Author

Listed:
  • Dongdong Gao
  • Jianli Li

Abstract

In this paper, we mainly discuss the existence of solutions for impulsive fractional differential equations. By applying variational methods and critical point theory, some new criteria to guarantee that the impulsive fractional differential equation has infinitely many solutions are established. Moreover, we improve and extend some previous results.

Suggested Citation

  • Dongdong Gao & Jianli Li, 2021. "New results for impulsive fractional differential equations through variational methods," Mathematische Nachrichten, Wiley Blackwell, vol. 294(10), pages 1866-1878, October.
  • Handle: RePEc:bla:mathna:v:294:y:2021:i:10:p:1866-1878
    DOI: 10.1002/mana.201800383
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/mana.201800383
    Download Restriction: no

    File URL: https://libkey.io/10.1002/mana.201800383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Yulin & Chen, Haibo & Qin, Bin, 2015. "Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 417-427.
    2. Nyamoradi, Nemat & Rodríguez-López, Rosana, 2017. "Multiplicity of solutions to fractional Hamiltonian systems with impulsive effects," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 254-263.
    3. Jing Chen & X. H. Tang, 2012. "Existence and Multiplicity of Solutions for Some Fractional Boundary Value Problem via Critical Point Theory," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nyamoradi, Nemat & Rodríguez-López, Rosana, 2015. "On boundary value problems for impulsive fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 874-892.
    2. Fares Kamache & Rafik Guefaifia & Salah Boulaaras & Asma Alharbi, 2020. "Existence of Weak Solutions for a New Class of Fractional p -Laplacian Boundary Value Systems," Mathematics, MDPI, vol. 8(4), pages 1-18, March.
    3. Danyang Kang & Cuiling Liu & Xingyong Zhang, 2020. "Existence of Solutions for Kirchhoff-Type Fractional Dirichlet Problem with p -Laplacian," Mathematics, MDPI, vol. 8(1), pages 1-17, January.
    4. Khaled, Khachnaoui, 2021. "Nehari type solutions for fractional Hamiltonian systems," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    5. Zhao, Yulin & Chen, Haibo & Xu, Chengjie, 2017. "Nontrivial solutions for impulsive fractional differential equations via Morse theory," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 170-179.
    6. Salari, Amjad & Ghanbari, Behzad, 2019. "Existence and multiplicity for some boundary value problems involving Caputo and Atangana–Baleanu fractional derivatives: A variational approach," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 312-317.
    7. Yulin Zhao & Jiafa Xu & Haibo Chen, 2019. "Variational Methods for an Impulsive Fractional Differential Equations with Derivative Term," Mathematics, MDPI, vol. 7(10), pages 1-15, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathna:v:294:y:2021:i:10:p:1866-1878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0025-584X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.