IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i5p86-d148349.html
   My bibliography  Save this article

Enhancing Strong Neighbor-Based Optimization for Distributed Model Predictive Control Systems

Author

Listed:
  • Shan Gao

    (Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
    Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China)

  • Yi Zheng

    (Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
    Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China)

  • Shaoyuan Li

    (Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
    Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China)

Abstract

This paper considers a class of large-scale systems which is composed of many interacting subsystems, and each of them is controlled by an individual controller. For this type of system, to improve the optimization performance of the entire closed-loop system in a distributed framework without the entire system’s information or too-complicated network information, connectivity is always an important topic. To achieve this purpose, a distributed model predictive control (DMPC) design method is proposed in this paper, where each local model predictive control (MPC) considers the optimization performance of its strong coupling subsystems and communicates with them. A method to determine the strength of the coupling relationship based on the closed-loop system’s performance and subsystem network connectivity is proposed for the selection of each subsystem’s neighbors. Finally, through integrating the steady-state calculation, the designed DMPC is able to guarantee the recursive feasibility and asymptotic stability of the closed-loop system in the cases of both tracking set point and stabilizing system to zeroes. Simulation results show the efficiency of the proposed DMPC.

Suggested Citation

  • Shan Gao & Yi Zheng & Shaoyuan Li, 2018. "Enhancing Strong Neighbor-Based Optimization for Distributed Model Predictive Control Systems," Mathematics, MDPI, vol. 6(5), pages 1-20, May.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:5:p:86-:d:148349
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/5/86/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/5/86/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenpeng Yu & Dong Liu & Yuhui Huang, 2013. "Operation Optimization Based on the Power Supply and Storage Capacity of an Active Distribution Network," Energies, MDPI, vol. 6(12), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Sun & Lin Lin & Haojie Li & Mitsuo Gen, 2019. "Cooperative Co-Evolution Algorithm with an MRF-Based Decomposition Strategy for Stochastic Flexible Job Shop Scheduling," Mathematics, MDPI, vol. 7(4), pages 1-20, March.
    2. Hanjie Hu & Yu Wu & Jinfa Xu & Qingyun Sun, 2018. "Path Planning for Autonomous Landing of Helicopter on the Aircraft Carrier," Mathematics, MDPI, vol. 6(10), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali A. Radwan & Ahmed A. Zaki Diab & Abo-Hashima M. Elsayed & Hassan Haes Alhelou & Pierluigi Siano, 2020. "Active Distribution Network Modeling for Enhancing Sustainable Power System Performance; a Case Study in Egypt," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    2. Wei-Tzer Huang & Kai-Chao Yao & Chun-Ching Wu, 2014. "Using the Direct Search Method for Optimal Dispatch of Distributed Generation in a Medium-Voltage Microgrid," Energies, MDPI, vol. 7(12), pages 1-19, December.
    3. Qingwu Gong & Jiazhi Lei & Jun Ye, 2016. "Optimal Siting and Sizing of Distributed Generators in Distribution Systems Considering Cost of Operation Risk," Energies, MDPI, vol. 9(1), pages 1-18, January.
    4. Bokyung Ko & Nugroho Prananto Utomo & Gilsoo Jang & Jaehan Kim & Jintae Cho, 2013. "Optimal Scheduling for the Complementary Energy Storage System Operation Based on Smart Metering Data in the DC Distribution System," Energies, MDPI, vol. 6(12), pages 1-17, December.
    5. Fei Chen & Dong Liu & Xiaofang Xiong, 2017. "Research on Stochastic Optimal Operation Strategy of Active Distribution Network Considering Intermittent Energy," Energies, MDPI, vol. 10(4), pages 1-23, April.
    6. Qais Alsafasfeh & Omar A. Saraereh & Imran Khan & Sunghwan Kim, 2019. "Solar PV Grid Power Flow Analysis," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    7. Chong Chen & Xuan Zhou & Xiaowei Yang & Zhiheng He & Zhuo Li & Zhengtian Li & Xiangning Lin & Ting Wen & Yixin Zhuo & Ning Tong, 2018. "Collaborative Optimal Pricing and Day-Ahead and Intra-Day Integrative Dispatch of the Active Distribution Network with Multi-Type Active Loads," Energies, MDPI, vol. 11(4), pages 1-22, April.
    8. Yajing Gao & Wenhai Yang & Jing Zhu & Jiafeng Ren & Peng Li, 2017. "Evaluating the Effect of Distributed Generation on Power Supply Capacity in Active Distribution System Based on Sensitivity Analysis," Energies, MDPI, vol. 10(10), pages 1-14, September.
    9. Yun Wang & Dong Liu & Chen Sun, 2017. "A Cyber Physical Model Based on a Hybrid System for Flexible Load Control in an Active Distribution Network," Energies, MDPI, vol. 10(3), pages 1-20, February.
    10. Yongma Moon, 2014. "Optimal Time to Invest Energy Storage System under Uncertainty Conditions," Energies, MDPI, vol. 7(4), pages 1-19, April.
    11. Fengbing Li & Kaigui Xie & Jiangping Yang, 2015. "Optimization and Analysis of a Hybrid Energy Storage System in a Small-Scale Standalone Microgrid for Remote Area Power Supply (RAPS)," Energies, MDPI, vol. 8(6), pages 1-25, May.
    12. Chen Sun & Dong Liu & Yun Wang & Yi You, 2017. "Assessment of Credible Capacity for Intermittent Distributed Energy Resources in Active Distribution Network," Energies, MDPI, vol. 10(8), pages 1-24, July.
    13. Matthew Rowe & Timur Yunusov & Stephen Haben & William Holderbaum & Ben Potter, 2014. "The Real-Time Optimisation of DNO Owned Storage Devices on the LV Network for Peak Reduction," Energies, MDPI, vol. 7(6), pages 1-24, May.
    14. Jiafeng Ren & Haifeng Liang & Yajing Gao, 2019. "Research on Evaluation of Power Supply Capability of Active Distribution Network with Distributed Power Supply with High Permeability," Energies, MDPI, vol. 12(11), pages 1-17, June.
    15. Fotouhi Ghazvini, Mohammad Ali & Soares, João & Horta, Nuno & Neves, Rui & Castro, Rui & Vale, Zita, 2015. "A multi-objective model for scheduling of short-term incentive-based demand response programs offered by electricity retailers," Applied Energy, Elsevier, vol. 151(C), pages 102-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:5:p:86-:d:148349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.